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The objective of this thesis is to investigate how the EMS for batteries in both vehicle and

stationary (e.g., grid-tied energy storage) applications can be enhanced using one of three

different approaches. The first of these is the evaluation of battery models such as State of

Energy (SOE) to understand system enhancements in comparison to traditional SOC track-

ing. A direct comparison between SOE and SOC is evaluated on a per discharge event basis,

but additionally as the battery is aged to understand model error between SOE and SOC.

Next, the second aspect of this thesis is for battery sensors, but more specifically, the imple-

mentation of pressure, or battery dimensional change sensors to correlate to SOC as a more

rapid SOC adjustment scheme. The third and final approach being pursued to enhance EMS

performance is called dynamic reconfiguration (DR). DR uses power electronic switches

(e.g. MOSFET, IGBT, etc.) inside the battery pack to give the EMS the ability to adaptively

reconfigure the series/parallel configuration of the cells during operation in order to optimize

the battery’s contribution to system performance as a function of the system operating point

together with the battery’s present condition, including SOC and SOH. This work is being

evaluated by simulation in order to understand lifetime performance capability which has

previously not been evaluated in the field.
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Chapter 1

State-of-the-Art Review

1.1 Lithium Ion Battery Overview

Li-Ion batteries were first commercially available in 1991 by Sony, and have been of-

fered ever since due to their higher working voltage profile in comparison to the traditional

Nickel based batteries [1]. Li-Ion batteries operate as intercalation electrodes with a lattice

structure in which Lithium Ions (Li+) are inserted and removed in both the cathode and

anode materials [1, 2]. During the charging process, Lithium Ions are transferred from the

cathode (positive electrode) to the anode (negative electrode), and subsequently transferred

from anode to cathode during discharge [1, 2]. This charging/discharging process is shown

schematically in Figure 1.1 for visual reference [2].

Depending on the application, different electrode materials can be utilized for optimiz-

ing the Li-Ion battery for specific targets such as energy, power, etc [2, 3]. Additionally,

Li-Ion cells have various geometric options, while in commercial options, the vast majority

are cylindrical (e.g., volumetric), or prismatic cell design [2]. Traditionally, cells have been

made as cylindrical cell design, but recently the prismatic design has drawn more attention

to improve the packing efficiency when stringing large quantities of cells together [1, 2].

1.2 Battery Applications and Systems

Understanding the basic functionality of a Li-Ion battery discussed in the previous sec-

tion, the use and functionality of batteries in application specific scenarios is key. Many
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Figure 1.1: Schematic of the electrochemical reactions in Li-Ion cells [2]

applications can be found that utilize an ESS, however for the scope of this project, focus-

ing on automotive and grid related applications will be the focus. Johnson Controls’ main

battery applications lie in this area, which directs our attention for EMS improvements into

these main application areas. Due to this, further discussion into each of these applications

should be conducted to understand the potential EMS options.

Figure 1.2 shows the operating range of temperature relative to the operating voltage

that can be used for Li-Ion batteries. Understanding the region for safe operation of Li-

Ion batteries is critical in all applications when designing the EMS [4]. The key operating

window for Li-Ion can be seen in the figure as 1.5V to 4.2V voltage range, and a temperature

range of -20C to 50C. This plot is solely meant as an initial requirement, where the actual

operating range of a battery can be altered based on specific electrolytes, electrode additives,

and cell design.
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Figure 1.2: Safety operating window for Li-Ion batteries [4]

1.2.1 Grid Energy Storage

Battery systems have grown in interest for utilization alongside the grid in recent years.

There are two main categories that batteries are used for: Peak shaving, and frequency reg-

ulation. Of course they could be used for backup power when the grid shuts down, but this

is very uncommon, so majority of interest lies in maintaining a stable grid via frequency

regulation, and peak shaving in times of high demand. Battery backup systems are heav-

ily utilized in commercial applications, however the actual usage is very minimal, and the

improvement potential in this application isn’t as significant in the applications surrounding

peak shaving, and frequency regulation. Each of these application types will be discussed in

more detail to understand potential EMS impacts of each type.

Peak Shaving

Peak shaving is a method in which the battery system will be utilized alongside the grid

when load demands exceed a preset value in order to reduce the demand required from other
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energy sources in the grid (e.g. Power plants, renewables, etc.) [5, 6]. Figure 1.3 shows

the typical load profile that would be seen from the EMS to decide when the battery system

could be utilized to peak shave [5]. In the figure, the red region shows times at which the

battery system would supply energy to the load to reduce demand from the grid, while the

blue region shows time where the grid is supplying excess power to the load, at which the

battery system could utilize this excess power to recharge the system.

Figure 1.3: Load profile for peak shaving opportunities [5]

The control methodology for how the EMS will integrate the battery system alongside

the grid power to supply the load demand is critical to have effective and efficient system

performance. Figure 1.4 shows the schematic of interaction between the EMS controller,

battery system, grid, and load components [6]. Note that the red lines indicate power flow

connections, and the black lines indicate control signal flow (no power transfer). Under-

standing how the grid load is effected by the battery utilization is critical in load scheduling.

The value at which the battery system peak shaves is entirely user choice and application

specific, however the value that is used is significant to making sure that the battery system

is properly sized to be able to support the load for the required time of the discharge event.
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Figure 1.4: Schematic of system for peak shaving [6]

Frequency Regulation

Frequency regulation is often performed on the grid level with generators at the MW

scale, and with the reduction in price of Li-Ion batteries, the integration of battery systems

for frequency regulation is of growing interest [7, 8]. Frequency regulation is essential to

maintain stable operation of the grid across the country, and ultimately the world. Utilizing

battery systems is a viable candidate to maintaining grid stability. Figure 1.5 shows the

difference between a grid operating on its own, and a grid operating with a battery system

acting for frequency regulation [7]. Note that when the battery system is employed alongside

the grid, the overall stability of the grid looks significantly smoother for the first 1,000

seconds where the batteries are utilized. Looking at the lower plot in Figure 1.5 it should

be noted that after 1,000 seconds, the frequency becomes more oscillatory and eventually

can become unstable when the batteries are no longer regulating. The lower plot directly

shows the significance of grid energy storage, and more specifically the improves stability

by utilizing the concept of frequency regulation. The system shows improved stability when

the energy storage is regulating the frequency, then when the energy system is disconnected,

the grid stability oscillates much more significantly than the time when the energy storage

was active.
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Figure 1.5: Frequency response when battery systems are not used, and when the batteries are used to regulate frequency [7]

1.2.2 Automotive Energy Storage

The automotive industry has many applications of battery systems ranging from small

starter battery systems all the way to full electric vehicles. Figure 1.6 shows a number of

commercially offered vehicles with different levels of vehicle electrification and the result-

ing carbon emissions for the vehicles [9]. A study showed that approximately 24% of the

global carbon dioxide production comes from the transportation industry [10]. The amount

of vehicle electrification can result in significant reduction in emissions, as seen in figure

1.6. Taking a more in depth look to each of these electrification levels are important, as each

respective level has their own EMS strategies in the vehicle.

Understanding the various different types of vehicles on the road is an important first
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Figure 1.6: Comparison of vehicle cost to emissions [9]

step to designing the EMS. In subsequent sections, the different types of vehicles will be

discussed more in depth, but the schematic difference in the vehicles is shown in Figure 1.7.

Note that moving left to right from a to g, the vehicle electrification is increasing, which

ultimately means that the size of energy storage would need to increase along this axis in

order to maintain similar range as the traditional ICE vehicle.

Figure 1.7: Schematic drawings of different types of vehicles [11]

Hybrid Electric Vehicle

HEV’s offer a low cost addition to standard vehicles, while allowing improved per-

formance [9, 10, 12–14]. HEV’s can be mainly classified into four different areas: Series

Hybrid, Parallel Hybrid, Series-parallel Hybrid, and Complex Hybrid. Figure 1.8 shows
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the functional block diagram to show the comparison between the four HEV methodologies

[15].

Figure 1.8: Classification of HEV’s [15]

For an HEV application, the battery system does not experience a full 100% DOD,

which would result in different aging mechanisms, but more importantly, different EMS

control strategies/algorithms [14]. A typical HEV duty cycle will operate at a nominal value

around 50% SOC, and the range of the operating window won’t typically extend beyond

80% SOC on charging, and 20% SOC on discharging [14]. This is important to understand,

because from the design perspective, the amount of available energy in the battery pack is

limited based on the SOC operating window selected. For example, if the operating range

is selected to be from 25% to 75% SOC (with a nominal value of 50%), then the useful

energy is only one half of the rated energy of the system. Basically, this means that the

energy required for the application needs to be multiplied by a factor of 2 so that the size

of the battery system is appropriately rated to take account for the available energy in the

pack. Subsequently, the size of the pack has to be oversized to meet the electrical needs of
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the vehicle, resulting in twice of the volume to store the battery system to meet the design

needs based on the operating window of 25% to 75% SOC.

Full Electric Vehicle

Full electric vehicles are unique in comparison to traditional ICE in many different as-

pects. ICE uses gasoline as its fuel along with a combustion engine for propulsion, where

the BEV uses an electric machine for propulsion, but utilizes batteries for the energy sup-

ply (or fuel). While ICE vehicles have batteries for traditional starter systems, the energy

storage capacity in a BEV is significantly larger than in ICE vehicles. One main difference

between BEV and ICE vehicles is the BEV has no tailpipe emissions, which most vehicle

companies market as a zero emission vehicle, but understanding the environmental impact

for the different types of vehicles is important for comparison. For example, if comparing

emissions between BEV and ICE vehicles, it is important to understand the emissions gener-

ated in the power plant to supply the power to charge the battery system in the BEV [11, 16].

Comparing the emissions across different hybrid and full electric vehicles is important, but

out of the scope for this research. This research is going to focus on the various subsystems,

models and algorithms that can be found within the ESS of different classes of vehicles.

Further understanding of how battery packs are utilized in applications vary signifi-

cantly based on the automotive manufacturer. Table 1.1 provides a breakdown of certain

vehicles, additionally showing details for the associated battery pack in the vehicles [17].

As imaginable, the automakers don’t divulge significant details for the vehicles themselves,

let alone the ESS. Due to this, in depth breakdowns of different subsystems within the ESS

isn’t feasible. However, a broad introduction to the various systems utilized in BEV’s will be

done throughout this section to discuss control algorithms, sensors, aging models, thermal

management, balancing methods, etc. In following sections, these systems will be broken

down, along with significant advantages/disadvantages associated with them when making

decisions in order to integrate these systems within a ESS.
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Table 1.1: Electric Vehicles with details on battery systems utilized [17]

Model Battery Pack
Toyota
Prius
(PHEV)

4.4kWh Li-ion, 18km (11 miles)
all-electric range

Chevy Volt
(PHEV)

16kWh, Li-manganese/NMC, liq-
uid cooled, 181kg (400 lb), all elec-
tric range 64km (40 miles)

Mitsubishi
iMiEV

16kWh; 88 cells, 4-cell modules;
Li-ion; 109Wh/kg; 330V, range
128km (80 miles)

Smart
Fortwo ED

16.5kWh; 18650 Li-ion, driving
range 136km (85 miles)

BMW i3 22kWh (18.8kWh usable),
LMO/NMC, large 60A prismatic
cells, battery weighs 204kg (450
lb) driving range of 130?160km
(80?100 miles)

Nissan
Leaf

30kWh; Li-manganese, 192 cells;
air cooled; 272kg (600 lb), driving
range up to 250km (156 miles)

Tesla S 70kWh and 90kWh, 18650 NCA
cells of 3.4Ah; liquid cooled;
90kWh pack has 7,616 cells; bat-
tery weighs 540kg (1,200 lb); S 85
has up to 424km range (265 mi)

Chevy Bolt 60kWh; 288 cells in 96s3p for-
mat, EPA driving rate 383km (238
miles); liquid cooled; 200hp elec-
tric motor (150kW)

1.3 Battery Metrics

Battery metrics in terms of this research is defined as an all encompassing term for mod-

els, algorithms, and sensors that would be used in a system that isn’t application specific. In

prior sections, applications were introduced with varying EMS objectives and methodolo-

gies, but in this section, discussion of EMS components and strategies will be discussed that

would be used regardless of the specific application of the energy storage system. In other

words, the term battery metric is used to discuss a technology that is application indepen-

dent, or universally used across all ESS fields.
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1.3.1 State of Charge

SOC at its simplest form is a method to track the current state of the battery in terms

of its available capacity (or Ah) remaining in the battery before needing to be recharged. In

its most simplest form, a current integral can be performed, and normalized with the rated

capacity of the battery to give a number as a percent of 100 basis to describe the SOC. There

are countless methods in academia and industry to track SOC in real-time, but discussing

the main categories of methods for tracking will be discussed here.

Coulomb Counting

Coulomb Counting is a method used by the EMS to calculate the remaining capacity

by accumulating the charge transferred in or out of a battery [18–20]. An obvious disad-

vantage of this method is the need for constant real-time monitoring of a battery’s voltage,

applied current, temperature, etc. The accuracy of this method comes down to the accuracy

of current and voltage sensors implemented in the battery pack, as well as accurate deter-

mination of the initial SOC of the cell. One of the major sources of error in this method

is the efficiency of the charge/discharge rate. [18] has shown that the C-Rate being applied

corresponds to an efficiency for the cell which will be needed to accurately estimate SOC

when using the Coulomb Counting method.

Figure 1.9: Charging Efficiency vs Charged-Capacity or SOC % [18]
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Figure 1.9 shows the relationship used in [18] for the charging efficiency with respect

to both charged capacity and SOC. The results were obtained by charging cells with a 0.6C-

Rate to the designated capacities, and then fully discharging them at a 0.1C-Rate. The

efficiency is then calculated by comparing the amount of charge delivered to the cell to the

charge discharged from the cell. The charged capacity is converted to SOC percent to obtain

the red line in the graph which describes the relationship on how the charging efficiency

is related to the SOC of the cell. It is intuitively reasonable that the charging efficiency is

reduced as the SOC increases while using the same charging and discharge C-Rate.

Figure 1.10: Discharge Efficiency under various C-Rates vs. Depth of Discharge (DOD) percentage [18]

Figure 1.10 shows discharge efficiency curves that were experimentally measured in

[18] by fully charging cells to 100% SOC and then discharging by a two-stage current pro-

file, first by a specified C-Rate current found in the legend, and then by a 0.1C discharge

rate to the cut-off voltage. Then the discharge efficiencies are calculated using Equation 1.1

where I1, I2, T1, and T2 are the discharging currents and periods during the first and second

stages, respectively.

hd =
I1T 1 + I2T 2

Qmax
(1.1)

The results shown in Figure 1.10 show that the discharge efficiency exhibits nonlinear

behavior when varying the DOD. According to [18], the optimal rate to implement when

targeting discharging efficiency is also dependent on the DOD that will be applied. This
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concept is intriguing from an EMS approach, which suggests that a cell chemistry’s dis-

charging efficiency could be characterized for a wide range of C-Rates, as well as DOD

values, to enable the EMS to select the optimum C-Rate to apply if targeting maximum

discharge efficiency.

As discussed previously, the accuracy of the Coulomb Counting method is heavily based

on accurate measurements of the charge/discharge capacity (e.g., charge) being transferred,

as well as the associated charge/discharge efficiency that is associated with the applied C-

Rate [18–20]. If these parameters are identified with high accuracy, the Coulomb Counting

method can provide a good SOC tracking method throughout operation.

Figure 1.11: Flowchart of Coulomb Counting SOC Estimation Method [18]

Figure 1.11 shows the common flowchart for an EMS that is implementing a Coulomb

Counting method for SOC tracking. Note that the voltage values used in the Vb greater/less-

than decision block is chemistry-dependent. For systems that contain small numbers of cells,

the EMS would be able to implement this flowchart method for tracking SOC. However, as

the number of cells increases, the computational power needed to implement this loop for

all of the cells becomes progressively more demanding, and could result in more expensive

EMS instrumentation to perform optimally.
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Estimation Algorithms = Two RC-pair Battery Circuit Model

Examining all of the many different SOC estimation algorithms in the literature would

be a major task. However, it is not necessary to look at all of them based on the scope of

this research. Nevertheless, it is important to understand the fundamental concepts of the

most important and popular estimation algorithms. To do so, understanding the two-RC-pair

battery circuit model is essential for developing a fundamental understanding of the many

variations in SOC estimation algorithms found in the literature.

Figure 1.12: Two-RC-pair battery circuit model for a Lithium-Ion battery [21]

Figure 1.12 shows the two-RC-pair battery circuit model that is used as the basis for

many estimation algorithms [21–24]. This circuit models the battery as a second-order sys-

tem, with values for the capacitors and resistors corresponding to the properties of the cell

electrochemistry, cell design, as well as cell size. More specifically, in Figure 1.12, Rct is the

charge transfer resistance, Cdl is the double-layer capacitance, Rdf is the diffusion resistance,

and Cdf is the diffusion capacitance [21]. The Rct-Cdl pair is used to account for dynamics

of the double-layer, and the Rdf-Cdfpair is used to account for diffusion [21].

Figure 1.13: Matching of model output and HPPC data for Lithium Iron Phosphate battery at 25�C and 65% SOC [21]
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Figure 1.13 shows the results when simulating a battery using the equivalent circuit dis-

cussed above, and compares the model output to the measured voltage when applying the

same load profile [21]. Examining the plot, the difference between the two results are min-

imal, and in this case the estimation algorithm is proving to be adequate for on-board SOC

estimation by the EMS. Unfortunately, the models become less accurate for more dynamic

battery cycles, where the load is constantly changing in small intervals.

A key prerequisite for maintaining accurate SOC estimation is to have highly-accurate

measurements of the battery voltage and current during operation. That is, the SOC estima-

tion algorithm can only be as accurate as the accuracy of the voltage and current sensors.

Figure 1.14: SOC estimation in presence of voltage and current noise [21]

In [21], the impact of sensor noise in the voltage and current measurements on SOC es-

timation accuracy was studied. In terms of EMS performance, understanding how the sensor

noise affects other system metrics is crucial to interpreting input data and making EMS de-

cisions. Figure 1.14 compares the estimated SOC vs. time when the voltage and current

sensors are exposed to noise with the same SOC estimates when there is no noise present. It

should be noted that sensor noises cause errors in the estimated SOC. This implies that an

EMS must minimize signal noise in the sensors outputs. In addition, the EMS algorithms

for calculating the battery metrics should be designed to be as noise-tolerant as possible to

enable the EMS to make proper decisions to achieve the system targets.

In nearly all battery systems today, SOC estimation is utilized for tracking and main-

taining EMS performance. Accurate SOC tracking both online and offline are crucial to
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maximize performance of the system, as well as to operate the batteries in a safe manner.

The performance of an EMS system is closely correlated with the accuracy of the SOC track-

ing algorithm. As the SOC error increases, the battery may or may not be able to deliver the

power that the EMS believes it can deliver. In most cases, this would be detrimental to not

only the battery, but the system in which the batteries are utilized.

1.3.2 State of Power

SOP, also known as State of Available Power, provides information on the power that the

battery is capable of delivering [25, 26]. To map the available power that can be delivered by

the battery, the EMS must first be able to map the voltage profile of the battery at potential C-

Rates. The available power from the battery varies depending on the C-Rate due to nonlinear

behavior of batteries based on the current they are delivering. There are several methods for

mapping the voltage profile of batteries.

Figure 1.15: Voltage Mapping structure for SOP prediction [25]

One common method illustrated in Figure 1.15 implements a sophisticated method to

map the voltage during operation [25]. This method determines the voltage map for the

expected range of output currents, and allows the EMS to apply this profile to determine
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the available power. Once the available power is known, the EMS can decide whether the

battery can accomplish a required task using the SOF metric which is described in detail in

Section 1.3.3. Simply stated, SOF gives the EMS a binary answer to the question of whether

the desired drive or load cycle can be accomplished by the battery system in its current state.

With this information, the EMS can incorporate other models to make decisions on whether

to proceed with the applied load, reduce the C-Rate current delivery, or stop operation to

protect the battery system.

Figure 1.16: State of Power Model Results [25]

Figure 1.16 shows the SOP model prediction results implemented in [25]. Note that

there is information provided by the SOP model not only for a single load duration (10 sec),

but an extended load duration (20 sec). This makes it possible for the EMS to interpret the

capability of the battery system to perform beyond the target region. In [25], the system

expected a 10 second cycle duration, and the SOP model also returned results for 20 sec-

onds so that the EMS would have the information it needed to estimate’s the battery’s power

delivery capability if the cycle extended beyond 10 seconds. In cases where the system is

fully charged and the load event is small, having this extra information might be unimpor-

tant. However, when the applied load is expected to bring the battery system to a low SOC,

the ability of the algorithm to predict the effects of extending the load time is essential to

maintaining safe operation of the battery system.
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1.3.3 State of Function

Technical details of the SOF estimation algorithm are likely to be different for different

applications. However, the basic premise of SOF remains the same. The goal of a SOF

model is to give the EMS a binary 1 or 0 signal to signify whether the battery can perform

a certain duty [27]. The EMS compares the predicted values from the SOP model with

the required values and utilizes the SOF model to decide if the current EMS strategy re-

quires updating. In [27] the SOF model determines the capability of the battery to crank the

combustion engine after several minutes of engine-off. In this situation, the SOF calculates

the minimum voltage reached during simulation of the continuous discharge followed by a

cranking pulse. The goal of the SOF is to predict if the battery is still capable of delivering

the required power for a defined amount of time.

[28] discusses the major factors that affect the SOF of a battery, which include SOH,

SOC, SOP, temperature and terminal voltage of the battery. However, [28] notes that SOF

must be tailored to the specific application. High accuracy is required from the SOC and

SOH algorithms, as well as the measured battery operating temperature to accurately com-

bine them together for prediction of the SOF.

1.3.4 State of Health

SOH can be defined as the relative performance and health condition of a used battery

compared with a fresh new battery. In [29] , SOH deterioration is attributed to irreversible

chemical reactions which lead to capacity fading and reduction in the remaining useful life.

SOH is a somewhat ambiguous concept, since different manufacturers have their own meth-

ods of determining SOH, and there is currently no fixed definition of optimal methods for

determining SOH for various applications. With this being the case, defining the SOH for

used by the EMS can be interpreted as simply determining the remaining usable capacity of

the cell in a way that remains accurate regardless of the cell’s age [29, 30]. For the scope of

this project, interpreting SOH in these terms is expected to be more than adequate to achieve

our objectives.
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Understanding the rate of deterioration of the SOH output can give useful insight to the

EMS to understand and predict end-of-life of the battery. Determining end-of-life is crucial

for an EMS because this can allow the EMS to make control decisions in order to delay the

cell’s failure. If the EMS has accurate information about SOH, the EMS control strategy

can be designed to reduce the rate of the SOH deterioration until the battery can be safely

replaced.

1.3.5 State of Energy

SOE can be defined according to Equation 1.2 below by [31–35]. This new metric

can be compared to the SOC metric discussed previously in Section 1.3.1. Since SOC is

simply the integrated current (e.g., charge) divided by the nominal charge capacity, SOE

is a conversion of En, the nominal stored energy capacity of the battery, he is the energy

efficiency, and SOE % is the percentage value (from 0 % to 100%) of the remaining energy

in the battery that can be used by the system.

SOE% =

R t1
t0 heV (t)I(t)dt

En
⇤100% (1.2)

This function is closely related to SOC, but calculated in terms of energy instead of

charge capacity, incorporating the voltage profile during operation into the integration term.

The incorporation of voltage is crucial to addressing the efficiency of energy stored in the

battery. SOC does not take voltage into account, and, therefore, the EMS has no way of

determining if the way that energy is being stored in the battery is the most efficient method.

By using SOE, the EMS is provided information about the available energy in the battery

pack (e.g., vehicle range), as well as information that it can use to evaluate the efficiency of

the energy storage in the battery.

Figure 1.17 shows the results for a typical drive cycle for an electric vehicle [36]. The

correlation between how the speed of the vehicle translates into the power required from the

battery pack shows the need to have a constant power draw function incorporated into the

EMS. Since the battery voltage is dynamically changing, determining the resulting current
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Figure 1.17: Drive cycle profile for an electric vehicle [36]

demanded from the pack becomes a challenging task for the EMS control algorithm. By

using the SOE criterion, constant power (the product of the dynamic voltage and current)

can be drawn from the battery pack to meet the vehicle requirements. In this case, calculation

of the estimated range becomes simpler since the SOE can be easily manipulated to estimate

the range based on calculated battery power.

Figure 1.18: Test procedure for OCV experiment [37]

Figure 1.18 shows the test procedure used in [37] to perform an OCV test on a Li-Ion

battery. The goal is to understand the impact of the discharged battery energy on the OCV.

The cell was discharged by 10% intervals and rested to record the OCV, and measurements

for both OCV and the discharged energy were recorded.

Figure 1.19 shows the OCV vs SOC relation during the OCV test performed in [37].

Figure 1.20 shows the relationship between discharged energy and SOC for the same OCV
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Figure 1.19: OCV test curve showing OCV as a function of SOC [37]

Figure 1.20: OCV test curve showing Discharged Energy as a function of SOC [37]

test. It should be noted that Figure 1.20 plots the discharged energy during each 10% change

in SOC. The plot in Figure 1.20 shows that the value of discharged energy is not the same

for every 10% SOC window that was tested. For example, from 100% to 90% SOC the

discharged energy was 2.945Wh, and the change in voltage was 0.1V. Then for 10% SOC to

0% SOC the discharged energy was 2.215Wh and the change in voltage was 0.4V. It should

be noted that both the change in voltage and discharged energy are not the same for every

10% SOC window, which suggests that voltage needs to be incorporated into the model so

that the EMS can take advantage of the fact that various amounts of energy can be removed

from the system at any given SOC. The traditional SOC metric does not incorporate voltage,

and the results from this test show how the voltage input has an influence on the discharged

energy.

Figure 1.21: Discharge Energy experiment based on power rate [33]
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Figure 1.21 shows one of the methods that SOE could be used to characterize the nomi-

nal energy of the battery [33]. Much like SOC uses a constant C-Rate current at a low value

to determine capacity of the cell as a function of voltage, the SOE metric uses a constant

P-Rate at a low value to determine the energy of the cell as a function of voltage.

Figure 1.22: Characterization procedure for populating 3-D lookup table for modeling SOE [38]

Figure 1.22 shows the characterization method proposed in [38] for populating a 3-D

table for mapping available energy based on P-Rate and SOE percent. The process starts by

using a fully charged battery and discharges the battery at a constant P-Rate (nominal rating)

until 20% of the rated energy has been discharged. Allowing the cell to rest for several

hours, the cell is then discharged at a constant P-Rate (nominal) until fully discharged, and

the amount of energy discharged here corresponds to the available energy for 80% SOE at

a nominal P-Rate. This same characterization process can be repeated for different SOE

percentage levels as well as different P-Rates until all the information needed for operation

is acquired.

Figure 1.23: Characterization procedure for populating 3-D lookup table for modeling SOE [38]

Figure 1.23 shows the 3-D map generated by utilizing the characterization process de-

scribed above for [38]. Note that as the P-Rate decreases, the available energy gets larger.
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Utilizing this 3-D map, an EMS could determine the range for a vehicle based on the SOE

percentage level and P-Rate required. In addition, the EMS can determine the energy effi-

ciency of the P-Rate being used, and make decisions about whether a more efficient P-Rate

can be used to boost the range.

Figure 1.24: Characterization procedure for populating 3-D lookup table for modeling SOE [38]

Figure 1.24 shows the same 3-D map for two different temperatures [38]. This data

shows that SOE is a function of temperature, which is also true for SOC. Understanding

the temperature effects on the SOE model are crucial for the EMS to fully utilize the power

and energy capability of the system. Further work needs to be conducted to study the effect

of various battery chemistries on the SOE model characteristics in order to determine the

nature of its dependence on electrochemistry.

Figure 1.25: 2nd Order equivalent circuit model used for deriving SOC and SOE models in experiment [39]

Figure 1.25 shows the equivalent circuit used in [39] to characterize the SOE metric

using an equivalent circuit model, which is a different approach from the integral Equation

1.2 discussed previously. The power integration is one method for offline SOE calculation,

but by implementing an equivalent circuit for calculating the SOC, an adjustment can be

made to determine the SOE.

Figure 1.26 and Figure 1.27 show the overlaid simulation and experimental results for

discharging a cell from a fully-charged state down to its lower voltage limit [39]. Using the
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Figure 1.26: Remaining energy in the system during operation both experimentally and simulated [39]

Figure 1.27: Correlation to SOC and SOE by utilizing 2nd order equivalent circuit [39]

equivalent circuit, the results for SOC and SOE can be determined for both the experimental

data, as well as the simulated model. The important observation is the separation between

SOC and SOE results throughout the drive cycle. At higher energy levels, both SOC and

SOE align closer together. However, as the energy is discharged, the separation between the

SOC and SOE predictions grows. Intuitively this makes sense due to the additional voltage

multiplier inside the integral for calculating SOE which cause a more rapid degradation

when normalized by the nominal energy. This separation in data shows the need to model

the SOE metric, since the performance characteristics of the SOC and SOE metrics are not

identical. Incorporating the SOE metric into an EMS can enhance vehicle range predictions,

as well as resulting in more energy-efficient usage of the energy storage components in the

system.

1.4 Battery Parameters

This section focuses more on physical measurements that can be made and commu-

nicated to the EMS in order to make an EMS decision. For example, Li-Ion requires cell

voltage monitoring (for safety concerns), temperature sensors to monitor the battery tem-

peratures locally, and typically a current sensor on each series line. However, the scope of



Chapter 1. State-of-the-Art Review 25

this research is to study any new sensor technologies that could be implemented to offer the

EMS to make better, or more informed control decisions.

1.4.1 Pressure Sensor

There can be multiple types of pressure sensors that can be utilized for a Li-Ion Bat-

tery. In subsequent sections, these different ways to measure the battery’s pressure will be

discussed. As the internal pressure of the battery changes, the exterior casing of the cell will

change depending on the type of battery casing used [40, 41]. Since the ideal sensor for

commercial purposes would measure externally to the cell, pressure sensor types will focus

here on solely measurement types that can be performed without penetrating the cell case.

Battery Dimensional Changes Measurement

Integrating a pressure sensor within the battery pack could offer EMS performance ad-

vantages in several areas. Traditional battery systems do not contain pressure sensors, and

the investigation of how pressure evolves during battery cycling is relatively undocumented.

The closest parallel would be investigation of gassing in cells. However, that study is more

focused on the specific gases being generated rather than the physical pressure in the system.

For many cell designs, the cell can expand and contract to a degree that external sensors can

be applied to the cell to make pressure measurements closely correlated with the internal

pressure [40–44]. Understanding how the cell’s volume changes throughout the cell’s life-

time holds promise for providing the EMS with additional information about the operating

conditions of the cell that it can use in combination with other battery metrics such as SOH,

SOC, etc.

Figure 1.26 shows the experimental setup used in [42] to take in situ measurements of

the battery’s volume change while applying various charge/discharge profiles to the cell.

Note that this external volume measurement scheme captures information about how the

entire cell expands and contracts, and raises questions about how different regions of the cell
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Figure 1.28: In Situ thickness measurement device [42]

expand and contract throughout the cycling. Would localized pressure sensor measurements

mounted across the cell surface result in different EMS decisions?

Figure 1.29: Increase of battery thickness during first charge at 0.05C rate of LG’s 383562 polymer cell [42]

[42] first discusses applying an initial 0.05C rate to a fresh cell, and uses the test fixture

shown in Figure 1.26 to measure volume change throughout this charge interval. Figure

1.29 shows the results of this experiment. The similarity of the measured thickness vs. time

profile to the measured voltage vs. time profile is very apparent. These results suggest that

volume change information could provide the EMS with additional information for SOC

estimation. To utilize the volume change information as part of an EMS control strategy,
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the relationship between cell thickness and SOC beyond the initial charge needs to be better

characterized.

Figure 1.30: In situ measurements of battery thickness during charge/discharge cycles at room temperature for LG’s 383562
polymer cell [42]

Extending the experiment beyond the initial charge, multiple charge/discharge cycles

were applied to the same polymer cell battery [42]. Figure 1.30 shows the results obtained

from this experiment, and the trend that is observed from the volume change again closely

resembles the voltage profile of the cell. Seeing this trend raises the possibility of the EMS

using the volume change as an additional input into other battery algorithms and models such

as SOC estimation, SOH, etc. However, it is important to note that all battery chemistries

exhibit different properties, as well as being used in different cell designs. Understanding

other aspects of this volume change beyond just this individual case is crucial before the

potential of this type of sensor in future EMS algorithms can be confidently evaluated.

Figure 1.31 shows the results of applying the same cycling profile from Figure 1.30

to a different cell design. Note that this volume change once again exhibits correlations

with the voltage profile. However, the volume change dynamic response of this cell design

appears to be more damped than for the previous cell results in Figure 1.30. This observation

stresses the importance of the cell design choice for determining the value of this volume

measurement sensor. When integrating this sensor into the EMS, selecting a cell chemistry

and design with faster response characteristics is likely to provide more useful information

to the EMS controller.
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Figure 1.31: In situ measurements of battery thickness during charge/discharge cycles for undisclosed battery manufacturer
B in [42] of cell size 383562

Figure 1.32: Variation of thickness during long cycles for LG’s 383562 polymer cell [42]

Figure 1.32 shows the measured thickness measurement in both charged and discharge

states vs. cell cycle number. Note that the discharged state means that the cell is at the lower

voltage cutoff limit, and the charged state corresponds to cell operating at the upper voltage

cutoff limit. The space between two curves represents the cell’s volume change envelope

during cycling. Examining the trend, the volume change plateaus after the initial SEI forma-

tion, reaching a steady-state value after approx. 60 cycles. Understanding how this volume

change behaves throughout the cell’s life would be of great interest and importance for eval-

uating the usefulness of this volume change measurement. For example, if the cell volume

rapidly expands towards the end of its life, this volume measurement could provide an EMS
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with early failure warnings that would improve fault protection of the battery system.

Strain Gauge Measurement

[43] characterizes the pressure relationship of a cell by installing a strain gage between

adjacent cell surfaces. The implementation of a strain gage would be simple in large-scale

systems. However, the nature of strain gages could also provide drawbacks which must

be considered. For example, strain gages secure their readings from very small changes in

the strain gage elongation, so a careful examination of the strain gage tolerance would be

required before the strain gage reading can be confidently incorporated into the EMS control

algorithm.

Figure 1.33: Strain gage experimental setup [43]

[43] performed experiments using five 50 Ah-class lithium- ion cells that were con-

nected in series and stacked between two metallic end plates with four tie rods as shown

in Figure 1.33. A strain sensor was attached to a tie rod to record in situ the strain change

of the cell stack during charging and discharging using an instrumentation amplifier. The

cells in this experiment were tightly fixed between the end plates with an initial strain value
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of 21 N/cm2. The strain change of the cell stack reflects the cell volume change. An in-

crease/decrease in strain indicates an expansion/contraction of the five Li-Ion cells, respec-

tively. The 50 Ah-class Li-Ion cells in [43] were tested by simulating a spacecraft in LEO

operation (Low Earth Orbit) with a DOD of 40% under constant current/constant voltage

charge and constant-current discharge conditions.

Figure 1.34: Strain gage measurements for selected cycles over cells lifetime [43]

Figure 1.34 shows measured voltage and strain results for a 0.5C charge rate with a

taper voltage at 3.95V as a function of the SOC for three cycle numbers on the left half

of the figure [43]. Corresponding discharge cycle results are plotted on the right side of

the figure. The strain increases monotonically during charging and decreases monotonically

during discharging.

It should be note that the voltage at the end of the discharge period decreases with

increasing cycle number. This decline in the finishing voltage of the cycle indicates degra-

dation of the cell. The degradation that is observable in the voltage can also be noted in the

strain readings for both charging and discharging. [43] suggests that the cell volume change

can be explained by simultaneous volume expansion (or contraction) of the anode and cath-

ode in the Li-Ion cell during charging (or discharging) events. Observing this change in

strain holds potential for providing valuable information for evaluating the aging of the cell.

If the EMS can interpret the expected strain change relationship over a cell’s lifetime, the
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EMS can use the strain sensor readings to predict the battery lifetime and implement appro-

priate changes to the cell usage, if needed.

Figure 1.35: Effect of the taper voltage on the strain measurement [43]

Figure 1.35 shows the change in strain vs. cycle and its dependence on the taper voltage

value that was applied to the cell during charging [43]. From this data, it can be noted that

the value for strain change depends highly on the taper voltage selected. For an EMS, the

selection of voltage limits of a cell can affect more than just the energy extracted from the

cell or the long-term aging of the cell. Selecting the correct voltage limit also determines the

change in strain that the sensor will detect. If an EMS is making control decisions based on

these readings, understanding the full significance and tolerance of the strain sensor values

is critical for the EMS to make correct decisions.

External Pressure Measurement

As noted earlier in this section, pressure sensors show potential for helping the EMS

carry out its analysis and control responsibilities in several different ways. Understanding

the different types of pressure readings that can be obtained is important. Previous studies

showed measuring volume expansion, as well as measuring change in strain. Finally, a study

of the external pressure applied to the cells in a battery pack will be discussed.

Figure 1.36 shows the apparatus used in [41, 44] to apply an adjustable constant pressure

to the external surfaces of a cell. For this experiment, commercial 500mAh pouch cells
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Figure 1.36: Constraint apparatus to maintain and measure compressive stack stress [44]

were used. The battery chemistry was lithium-cobalt-oxide cathode and graphite anode

with LiPF6 organic solvent electrolyte. The cells were conditioned with C/2 rate current

until reaching a 2.7V cutoff prior to being placed in the test apparatus.

Table 1.2: Summary of cell stack pressures in MPa. Initial is the stack pressure applied
before stress relaxation occurs [44]

Stack pressure Initial Min Max
Unconstrained — — —

Low 0.05 0 0.5
Medium 0.5 0.2 1.5

High 5 1 3

Table 1.2 shows the pressure values that were used in the experiment to define low,

medium, and high stack pressure values that were utilized in the experiments [44]. The

"initial" column represents the stack pressure applied before stack relaxation occurred.

Figure 1.37: Stack stress evolution at early time at high, medium and low stack applied pressure [44]
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Figure 1.37 provides results from the experimental test for a series of charge and dis-

charge cycles, showing how the stress measured by the load cell is affected by low, medium

and high applied pressures [44]. These results show that the amplitude of the envelope be-

tween the upper and lower voltage limits of the cycle grows with increasing applied stack

pressure. This feature is important when considering the potential value of these readings

to an EMS, since the sensor amplitude change needs to be normalized by the applied stack

pressure. In this situation, it would be preferred for the EMS to apply a high stack pressure

so that the change in stress is largest, reducing the required sensitivity of the EMS sensor in-

put channel. However, understanding how the stack pressure affects the cell life is important

as well in order to avoid premature aging of the cells.

Trends in the Figure 1.37 waveforms indicate that the measured stress is correlated to

the cell SOC, as observed with the volume change measurement and the strain gages. As a

result, this external pressure measurement technique, like the other two, is a candidate for

use in SOC estimation algorithms and, possibly, cell aging estimation algorithms as well.

Figure 1.38: Stack stress evolution as a function of cycle number for high, medium and low applied pressure [44]

Figure 1.38 shows data curves for maximum, minimum and average stress results for

multiple cells under the same test conditions as a function of cycle number [44]. Examining

the results, it is important to note the resulting stress evolution vs. number of cycles for each

stack pressure. The cell tests with low and medium initial applied pressure behave similarly

in a linear fashion, while the high stack pressure caused early failure. This significant result
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highlights the tradeoff that must be evaluated when considering the use of stack pressure as

a potential cell parameter. As noted above, high stack pressure amplifies the stress change,

but its significant negative impact on cell life is unacceptable. The potential to use low or

medium pressure will depend on whether these pressure levels have a measurable negative

impact on the cell’s lifetime, while recognizing that the measurement sensitivities for these

reduced pressures will be lower than for the high pressure condition.

Figure 1.39: C/2 capacity averaged overall 3 cells at high, medium and low applied pressures as a function of cycle number
[44]

Figure 1.39 shows the resulting capacity of the cells normalized against each other as a

function of cycle number [44]. Since more than one cell was tested for each condition, the

lines shown are averaged, with error bars added to show the variation in cell performance

among the tested cells. As noted above, it is critical to understand the impact of applied cell

pressure on life in order to evaluate the potential usefulness of this measurement technique.

This figure confirms that using a high stack pressure will result in early failure of the cell.

In contrast, the impact of low and medium pressure conditions on the cell capacity vs. cy-

cle number is much more benign. For comparison, the plotted curves also include one for

unconstrained cells in order to provide a baseline for cells that have no external pressure

applied. These curves indicate that medium pressure exhibits a rather small but measurable

degradation in cell capacity vs. cycle number compared to the unconstrained curve. Interest-

ingly, the cells with low applied pressure actually exhibited high-cycle-number capacity that

is slightly better than the unconstrained cells, which could be a statistical anomaly. Most

importantly, these results suggest that the use of low to medium applied pressure to enable
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external cell stress measurements deserves further consideration as a means of providing

improved SOC estimates for use by future EMS control algorithms.

Figure 1.40: Photographs of the disassembled pouch cells showing different types of mechanical stress dependent degra-
dation. The boxed portion underscores an area where the spatially nonuniform lithium distribution within the anode is
particularly visible, with black, red, and yellow colored regions in close proximity. Similar lithium distributions can be seen

on each face of the partially charged medium stack pressure anode. [44]

Figure 1.40 shows the results of destructive physical forensic analysis on numerous cells

in the study [44]. Headings along the top of the figure identify the test conditions for each of

the cells, with a "Pristine" untested cell shown at the far left to provide a useful baseline for

comparison. Examining the differences in cathode, anode, and separator provides valuable

insights into the physical effects of applying mechanical stress on the cell. For high stack

pressure, delamination of the cathode material is evident, and the discoloration of the sepa-

rator show that the rapid degradation on cell performance had a serious negative impact on

the electrodes. However, under medium and low stack pressures, the delamination effect is

no longer evident, and the electrode surfaces remain much more intact, suggesting that the

impact of these applied mechanical stresses on the electrode surfaces is much more benign.

Figure 1.41: Experiment apparatus with fixed pressure between all cells in pack [45]
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Figure 1.41 shows the apparatus used to study 25Ah NMC based lithium ion pouch cells

[45]. An airbag was placed between each of the cells in the apparatus to maintain constant

pressure on all surfaces of the cells. The airbags are all connected to a centralized pressure

regulator to maintain a constant pressure value on the surfaces of the pouch cells for the

entire experiment. As the cells expand, the airbag self-regulates to maintain a lower internal

pressure value, which results in constant applied pressure on the surfaces of the pouch cells.

Figure 1.42: Discharge curves and EIS test results for varying temperatures [45]

Figure 1.42 shows results from both a capacity test (left), and an EIS test (right) for the

pouch cells shown using the test apparatus described above at three different temperatures

[45]. First examining the results from the capacity test, it should be noted that, as the

applied pressure to the pouch cell increases, the discharged capacity decreases. This result

is consistent with the results of the previous study [44], exhibiting the same capacity trend

as a function of applied pressure. However, this study took the experiment a step further by

characterizing the capacity effect at different temperatures. As the temperature increase, the
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capacities also increase. Although this trend is not a surprise, it is interesting to observe the

gradient between delivered capacities as a function of applied pressure across these different

temperatures.

Studying the results from the EIS test in the right column, the relationship between

measured impedance and pressure is observable. EIS has the potential to provide insights

into the cause of the impedance rise from different phenomenon. Understanding that varying

temperatures cause variation in impedance level, examining how the impedance is affected

by varying pressure shows interesting insight into the electrochemical impacts within the

cell with varying pouch cell pressure.

From an EMS perspective, the ability to utilize the information that applied stress can

provide has been shown. An EMS could use this type of sensing to help predict other system

components, such as SOC estimation, but could be extended to models such as SOH/aging.

Selecting the correct applied pressure is crucial to ensure that the EMS interprets the data in

the correct way.

1.4.2 Gassing Sensor

Within Li-Ion battery systems, gas evolution does not occur during normal operation.

Due to this, gas sensors have not traditionally been implemented into Li-Ion battery systems.

Standard monitoring of voltage, current and temperature are adequate but do not detect

certain hazardous situations such as electrolyte leakage, or cell venting. If a Li-Ion cell

vents, or leaks, the material exposed to a fresh air environment poses a serious fire hazard.

Due to this, early detection of these failures is crucial to let the EMS take counter measures

to try to prevent events such as thermal runaway.

Figure 1.43 shows the proposed system topology in [46] to implement a gas moni-

toring system within a battery pack. This type of system detects when a cell has already

failed, since the sensors are not internal to the cells themselves. However, this sensor is

still beneficial because when a cell fails and vents, the fire hazard comes from continuously
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Figure 1.43: Block diagram of a battery system with additional gas monitoring unit [46]

charging/discharging the cell. If the gas monitoring system detects a cell venting, then the

EMS can shut down current flow to prevent further damage to the cells.

Figure 1.44: Experiment apparatus for overcharge experiment with gas monitoring sensor [46]

Figure 1.44 shows the testing apparatus that [46] implemented to perform a 5C over-

charge test. A 5Ah NMC lithium ion pouch cell was used for the experiment. The gas

sensor was placed directly above the cell so that when venting does occur, the gas would

pass directly over the gas monitoring system.

Figure 1.45 shows the results from the experiment, where the top plot is the data from

the gas sensor, the middle plot is the cell temperature, and the bottom plot is the cell voltage

data [46]. Two important times were marked on the plots to bring attention to key points in

the test that would be useful for an EMS. The first time (cursor 1 = 340 seconds) shows the

time that the gas sensor dropped severely in magnitude, indicating that the calibrated gas has

been detected. The second time (cursor 2 = 380 seconds) shows the time that the cell began
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Figure 1.45: Results of 5C overcharge experiment [46]

going into thermal runaway. Between these times the EMS could have had 40 seconds to

interpret the data from the gas sensor, and shutdown current flow through the cell. From an

EMS perspective, this study shows that implementing a gas sensor could have prevented this

system from entering a thermal runaway event. Even though the cell did fail, if the system

prevented thermal runaway then this is still a success. Depending on the application, such as

an electric vehicle, if a cell enters thermal runaway several people could be seriously injured.

Utilizing gas monitoring systems within a battery pack has been shown to be of some benefit

to enhancing EMS performance by improving safety and detecting early failures.

1.4.3 Temperature Sensor

For safety concerns, temperature monitoring of the batteries within the ESS is crucial to

ensuring that no cell can enter thermal runaway (thermal runaway is a fire type of an event

that occurs for Li-Ion when internal temperatures exceed 120 degrees Celsius). In order to

monitor temperature, the EMS has the option of employing temperature sensors externally

to the battery to monitor the external surface temperature, or design an internal temperature

sensor to place within the cell when manufacturing. This section discusses both of these

options, as well as potential advantages/disadvantages associated with each sensor type.
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Cell Level

Traditional external thermocouple sensors are utilized in monitoring the cell tempera-

ture for all cell’s in a battery pack. Critical selection for placement of where the thermo-

couple is placed on the cell will determine how the EMS will make decisions based on the

temperature data. A study shown in [47] tackles the issue of optimizing sensor placement

on a cell based on the thermal properties of a pouch cell. By placing thermocouples across

a cell’s surface, they showed the temperature profiles during cell operation.

Figure 1.46: Cell Temperature profile during operation for a pouch cell design [47]

Examining the results of the experiment in Figure 1.46 show how the temperature across

a cell’s surface varies, and that the location that a temperature sensor is placed is crucial for

how the EMS makes decisions. Placement of sensors in regions of high temperatures result

in the EMS system understanding that this is the absolute high value, and in some cases,

will shut down operation prematurely to prevent thermal runaway. Placement of sensors in

low to moderate temperature regions can be dangerous as the EMS will never understand

the highest temperature of the cell to prevent thermal runaway.

[47] and [48] discuss the performance benefit to the accuracy of cell temperature when

implementing more than one temperature sensor. Both papers discuss the optimal placement

of a temperature sensor if utilizing one sensor. However, [48] takes this a step further and

discusses the optimal location placement of two sensors for EMS performance. If the system

has more than one sensor per cell, placement of one sensor in the region of the highest

temperatures, and another sensor in the region containing the average temperature in the

cell gives EMS the best information for performance enhancement. By having these two

sensors, the EMS can use the average value sensor to use this value in algorithms to predict

things like SOF, SOP, SOH and other models. While the EMS can use the sensor in the
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highest temperature region to protect the system from entering thermal runaway. In this

case, having two sensors measuring temperature could prove to have a system performance

enhancement.

Cell Internal

Designing an internal sensor for Li-Ion Battery chemistries required several important

factors. The first of which is the environment that the sensor needs to operate in. Li-Ion

chemistries use inorganic electrolytes that can cause degradation of sensors over time. Since

the sensor is exposed to the full chemistry within the battery, the sensor needs to survive in

this environment while still providing accurate readings. The second critical criteria are the

flexibility of the sensor. Especially in Pouch Cell designs, the ability for the sensor to be

flexible as the cell expands and contracts throughout cycling is important.

A fabrication process for designing such a sensor was performed by [49] by designing

a flexible sensor material utilizing parylene. They manufactured and calibrated the sensor

prior to inserting the sensor internal to the pouch cell.

Figure 1.47: Internal Temperature Sensor implemented within Li-Ion Pouch Cell [49]
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Figure 1.47 shows the method of which [49] implemented the internal sensor within the

pouch cell. For their experiment, 2 internal temperatures were implemented on the bottom

edge of the cell on the left and right sides. An external thermocouple sensor was places on

the flat surface of the cell in the center where typical systems would measure the external

surface temperature of cells.

Figure 1.48: Internal Temperature Sensor results for a 1C cycle of Lithium-Ion Pouch Cell with external thermocouple as
comparison [49]

Figure 1.48 shows the results of a 1C charge/discharge cycle of the cell design shown

in Figure 1.47 [49]. Results show that by measuring internal temperature, not only the mag-

nitude of temperature being measured is different, but the time response for the temperature

change is more rapid for the internal temperature sensor.

Understanding the system level benefit of an internal temperature sensor is critical for

the scope of this project. Today’s energy management systems use the external thermocou-

ple as a temperature sensor on each of the Li-Ion Cells within a Battery Pack. The infor-

mation that the management system receives is then used to protect the cell from entering

thermal runaway. All Li-Ion cells cannot exceed a specific temperature to prevent thermal

runaway, so the management system needs to understand what temperature each cell is to

shut down operation in situations where the temperature of a cell begins to increase to an

unsafe level. The issue with external temperature sensors is that management systems need

to take that information and use an algorithm to predict what the internal temperature of

the cell would be to determine if the cell needs to be removed from operation. As could be
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imagined, in some instances, the cell is shut down prematurely, and the system stopped oper-

ation when it was not necessary, but if a management system had more accurate temperature

measurements of each cell, the performance of the overall system could be pushed to further

limits due to higher operational control of each Li-Ion cell. As shown in Figure 1.48, the

internal temperature sensors provide 2 important benefits to an EMS that traditional external

sensors do not.

The first performance benefit is the higher accuracy of temperature readings for the in-

ternal temperatures of the cell. By having more accurate values to what the true temperature

is within a cell, the EMS could push performance further of the system while still operating

in a safe region in comparison to measuring external temperature and applying an algorithm

to predict the internal temperature value.

The second performance benefit is the more rapid temperature response that the EMS

is given for the internal sensor. Examining Figure 1.48 we can see that both the internal

temperature sensors show a more rapid response to how the temperature is evolving. With

this higher response time, the EMS will be able to push performance further without the

concern for the cell temperature continuing to rise after stopping operation.

1.5 Energy Management Control Strategies

Previous sections focused on sensors and algorithms to monitor individual battery per-

formance. This section focuses on the control of the different EMS topologies. The sen-

sors themselves are important for EMS performance, but by employing different control

strategies, the overall system performance can drastically be affected, and thus requires an

additional consideration in battery pack design.

1.5.1 Thermal Management Methods

Thermal management is perhaps one of the most critical aspects of an EMS, where suc-

cess or failure of the thermal management can directly result in either safe, or dangerous

operation of the battery system. Thermal management systems can be grouped into two
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categories, where one is PCM that are modeled as a passive control scheme, while the sec-

ond group is fluid heating/cooling which is modeled as an active method. Both of these

groups will be discussed in detail in subsequent sections to understand the EMS impacts

of each group. Traditional ICE vehicles repurpose heat coming off the engine to use as a

cabin heater, while when moving into BEV, the luxury of repurposing heat doesn’t exist.

This results in the need to place a heater device in the vehicle for the EMS to utilize when

needed. This results in significant range reduction in regions where large vehicle heating

is conducted, such as the midwest in the United States during winter seasons. Focusing on

the thermal management systems and how they can be efficiently utilized from an energy

demand perspective will be discussed in following sections to understand any ways to miti-

gate this range depreciation in colder climate regions where BEV’s need to utilize additional

vehicle heaters.

Phase Change Materials

PCM are classified as a passive control scheme, where the battery pack is filled with a

phase change material that completely surrounds the individual batteries. PCM were widely

used as a means of storing thermal energy dating back many years, until recently where they

were first introduced as a battery thermal management method in 2000 by [50]. Figure 1.49

shows a schematic of how the PCM would be employed in a battery pack. Each numbered

cylinder would be a battery (cell) in the pack, and the darker shaded rectangle would be the

PCM which surrounds all of the cells in the system [50].

Figure 1.49: Schematic Description of PCM utilized in battery pack where each cylinder is a battery and the surrounding
rectangle encompasses the PCM [50]
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One interesting benefit of the PCM is that under cold operating conditions, the PCM

will store the heat generated from the cells in the PCM after discharge, which will effec-

tively heat the batteries at a higher temperature than the cold ambient conditions, which can

result in better energy efficiency in colder climates [50–53]. Other main benefits that can be

associated from PCM could be: high compactness, low cost, no need for circulatory network

of fans (additionally, no need for space in battery pack to allow air flow), and designed cool-

ing effects [51, 52]. Despite these advantages, the implementation of PCM results in some

system drawbacks that would need to be addressed prior to utilization. Figure 1.50 shows

a flowchart provided by [51] to address the advantages and disadvantages when using PCM

in an EMS. When selecting PCM for a specific application, it is crucial to understand the

limit that the PCM can maintain the batteries at a safe operating condition, since the system

is passive, it has no way of preventing thermal runaway when this predefined temperature

limit is reached.

Figure 1.50: PCM Advantages & Disadvantages in EMS [51]

Fluid Heating/Cooling

Fluid heating/cooling takes a more active control strategy in contrast to PCM previously

discussed. In this category, heating/cooling methods can be grouped into two categories:
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Liquid or air control. Battery systems could be heated/cooled by being submerged in a

liquid bath, but more practically, air cooled with fans to disperse the fresh air across the

surface of the battery cells. Figure 1.51 shows a schematic of how an air cooling strategy

would be employed in a battery system. As seen in the schematic, the flip door valve allows

the EMS to have active control of when the battery system needs to be heated/cooled, which

gives the EMS capability to dynamically control when the heating/cooling system needs to

be used [51–53]. By giving this control capability, the EMS is able to control the amount of

energy allocated to the thermal management system, but no matter how often the system is

turned on, this type of thermal system will always consume more than the PCM previously

discussed. Additionally, the battery pack volume needs to be larger for this type of thermal

management system to operate in contrast to PCM, which could pose certain challenges in

applications like automotive where volume of systems is limited.

Figure 1.51: Air Cooling schematic for battery pack utilization [51]

1.5.2 Battery Balancing Methods

All batteries have a variance in voltage throughout the entire battery pack that can be

attributed to multiple factors. Due to manufacturing conditions, different cells of the same
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design might have slight variations in capacity, which will result in slight voltage imbalances

as the entire battery pack is discharged [54, 55]. Manufacturers sort cells after a capacity

check to place cells with closer exact capacities with each other in order to minimize the

amount of cell balancing needed during operation. However, as the cells age over time, the

voltage separation increases which results in the demand for increased battery balancing.

Figure 1.52: Schematic of Resistive Balancing method [55]

Figure 1.52 shows perhaps the simplest (and cheapest) balancing method known as

resistive balancing [55]. Essentially the EMS reads the individual cell voltages in the pack,

and if the voltages are not aligned according to the application specification, then the EMS

closes the switch to the resistor in order to slowly discharge the cell and align the voltages.

Note, that this is essentially burning off energy, so this battery balancing method is incredible

inefficient, so for applications such as EV’s or Grid storage, this method is rarely employed.

For applications that require extremely cheap products, this system might be employed to

maintain a low cost, while absorbing the inefficiency that comes with the system.
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Figure 1.53: Schematic of Boost Shunting Balancing method [55]

Figure 1.53 shows the schematic circuit for employing a more energy efficient balancing

method called boost shunting [55]. In contrast to the previously discussed resistive method,

in this case the excess energy in cells are redirected by the EMS to essentially charge the

cells with lower voltages. Instead of burning off the excess energy in resistors, the energy is

utilized to charge the lower voltage cells. While this is a more energy efficient method than

the resistive balancing, the energy being used to balance is still lost energy in terms of the

load energy seen.

1.5.3 Dynamic Reconfiguration

The concept of DR will be introduced in this section, but an important note should be

made before hand. Prior system concepts such as thermal management and battery balancing

that have been previously discussed are more small changes to the system and can result in

some improvements in system efficiency. DR is a more aggressive system topology change

that could also effect significant changes in battery balancing systems, thermal management

systems, and other EMS control strategies. However, the overall system improvements evi-

dent from DR will be discussed, and if the performance increase is evident, this aggressive

topology change would be highly beneficial.
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Concept Description

Traditional battery systems comprise of a fixed series-parallel cell topology that is opti-

mized to satisfy current and voltage requirements [56–63]. However, these fixed topologies

lack the ability to adapt to dynamic behavior of batteries, especially related to manufactur-

ing difference. As cells are cycled they begin to show separation in performance, and weak

cells begin to be identified causing deficiency in performance as well as a cell unbalance

issue [56–63]. The concept of DR consists of integrating power electronic switches into the

battery pack to replace the fixed series-parallel topology. These integrated power electron-

ics give the EMS the option to dynamically reconfigure the series-parallel topology, thus

dynamically altering the battery packs terminal voltage.

Figure 1.54: Battery Pack Circuit Design with Integrated Power Electronic Switches [56]

Figure 1.54 shows the common battery pack circuit design when integrating power elec-

tronic switches. The reconfigurable flexibility of the system is strictly dependent on the

number of switches implemented per cell [56]. As more switches are implemented in the

system, the number of configurations that the EMS can alter the pack to increases in a non-

linear fashion. The task as a design engineer for a commercial manufacturer would be to

optimize the configuration flexibility required for the specific application to save money in

the system (by reducing the number of switches per cell). By implementing these switches,

the EMS earns endless possibilities of which to utilize this new capability to target specific

system goals. Some of the main optimization techniques that the EMS can be designed for

are discussed in Section 1.5.3.
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When examining the potential implementation of this technology, the performance ben-

efit is quite clear as to why this technology can boost EMS performance. However, with

this technology a few main drawbacks arise that need to be answered prior to implementing

in a commercial ready application. The first is the energy overhead of added electronics.

By implementing switches throughout the circuit, the additional energy required to utilize

these switches must be accounted for in battery models. Although, the energy consumption

of these switches is typically orders of magnitudes smaller than the capacity of a battery.

Either way, this energy must be accounted for in EMS models such as SOC, SOF and SOP

functions to accurately predict performance that the battery pack can configure. Another

potential drawback is the time overhead of reconfiguration. Since power electronic switches

are utilized to reconfigure the pack, there is a minimum time the system takes to alter the

switch network throughout the pack. While this switching is taking place, the system needs

to be under minimum loading, ideally no load, so that the cells don’t experience any shorting

during switching. However, switching of the configuration can be done at a very fast switch-

ing frequency, to perform this under full load considerations the ESS must have an adequate

DC bus capacitance to compensate for the time needed for switching. Now, these issues

that arise with this added technology are certainly manageable, but certainly must be paid

attention to so that a safe and reliable product could be used in commercial applications.

Graph Theory Implementation for Configuration Decision

The application of graph theory can be implemented so that the EMS can determine at

any time the optimum configuration based on the load requirements [56]. Applying graph

theory to a battery pack we can obtain a weighted and directed graph Equation 1.3.

G = (V ,E ,W ) (1.3)

V = n1,n2, ...,nN (1.4)

The vertex set V represents the batteries in the pack, and can denote V as in Equation

1.4. The edge set E represents the configuration flexibility of the pack. Figure 1.55 shows

the connectivity matrix drawn visually to show the options that a cell would have to connect
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Figure 1.55: Graph Theory Representation of Configuration Flexibility of a Cell in the Battery Pack [56]

with for the configuration found in Figure 1.54. Finally, W represents the weight of each

vertex in the connectivity matrix, meaning the voltage of the corresponding battery at each

time instant.

Once this equation is obtained by the EMS, the optimal configuration can be found by

using any technique of which the design engineer chooses. Something to note, is that as

the number of cells increase in the system, the more useful the graph theory representation

becomes. In a small battery pack with 8 cells, it is rather obvious the potential configurations

given a low number of power electronic switches per cell. However, as the battery pack gets

larger, like in the original Tesla Roadster containing approximately 6,800 cells, the potential

configurations are overwhelming even when a low number of power electronic switches are

implemented per cell [64]. For battery packs like in the Tesla Model S, this graph theory

representation is crucial to allow the EMS to make the optimized configuration choice at a

given time instant in hopes to boost performance.

Configuration Optimization Techniques

Since DR has been introduced and discussed in detail from the hardware perspective,

discussion on how the EMS will make the configuration decisions is needed. While there

are many different ways to control the way the system makes decisions, there are a few that

need to be highlighted as signifcant areas investigated in literature.

Minimize Converter Losses for Increased System Efficiency

Perhaps the simplest technique both to implement in a system as well as control dynam-

ically, maximizing the parallel strings in the pack ultimately is reducing the applied current
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to individual cells in the pack. The idea behind this is by reducing the current amplitude to

the individual cells, not only will they last longer in discharge time, but the cells will degrade

at a lower rate.

min
P

npV out
(1.5)

To maximize the parallel strings in the pack, applying Equation 1.5 along with the graph

theory representation, the EMS can identify the optimum configuration for this technique.

In this equation, P represents the power required by the load, np represents the number of

series battery strings that are connected in parallel to supply the load requirements, and V out

represents the voltage out of the terminals of the configuration [56].

Figure 1.56: Operation Time for DR and fixed series-parallel topologies [56]

Figure 1.56 shows the results in [56] as they applied 3 different load profiles to both

a dynamic reconfigurable pack, and a static 4 series 2 parallel (4S2P) configuration. Ex-

amining the results, the dynamic reconfiguration design shows superior performance under

dynamic loading conditions.

The flexibility for the EMS that this technology provides has potential to the way we

design battery systems. Implementation of this technology should keep the volume that the

system occupies relatively the same since only the connections between cells are altered. If

key obstacles with this technology can be overcame, vehicle applications can make decisions

for the energy system as to whether they want to keep the same pack size and take the

increased range, or reduce the energy system volume so that it matches the performance of

the traditional system. This would then free up space in the vehicle for other systems, or

reduction in vehicle size all together.
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State of Health Aware Optimization

The concept of State of Health (SOH) aware optimization is to ensure that any usable

capacity is extracted from all cells in a pack. For traditional fixed series-parallel systems,

the deliverable capacity that the pack can deliver is dependent on the weakest cell in a series

string within the pack. Due to manufacturing capabilities, not all Li-Ion cells contain the

same deliverable capacity. In addition, not all cells degrade at the same rate, which over

time would result in a fluctuation in cell capacities throughout a battery pack [61].

Figure 1.57: Series and Parallel connection of cells resulting Capacity of the system [61]

[61] shows that in Figure 1.57 how the capacity out of the system relates to the cells

within the configuration. If the system consists of just one series string, then the capacity

the pack can deliver is simply the weakest cell in the system. However, when there are more

than one series string, then the pack’s deliverable capacity results in the sum of the capacity

from each of the weakest cells in each series string.

[61] experimentally studied the effect of SOH reconfiguration, and Figure 1.58 shows

the system model that was adapted to test the system performance. For their study, [61]

applied a voltage regulator for each series string in the pack to regulate voltage of the string

due to voltage imbalance between cells.

The design of experiment can be seen in Figure 1.59 that [61] applied to determining

the performance benefit a EMS could receive via reconfiguration optimization of SOH. The
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Figure 1.58: SOH aware DR System Model [61]

Figure 1.59: Experimental Details of SOH aware Reconfiguration [61]

concept proposed is by grouping cells of the strongest capacity together, and the weaker

cells together will result in more usable capacity in each of the strings. Since the deliverable

capacity of the series string is dependent on the weakest cell, by grouping the weakest cells

in a single string, the extra capacity in the stronger cells will be available to use.

Figure 1.60: Graph theory representation for SOH aware full reconfigurability of experiment with 4 cells’ in a battery pack
[61]

Figure 1.60 shows the graph theory visualization for the battery system used in [61].

In this case, full reconfigurability is available to the EMS since there are only 4 cells in the

system. For this case, grouping of cells in 2 series 2 parallel configurations are the only

option, but the selection of which cells are in each string is subject to EMS decision.

Figure 1.61 shows the results when experimentally testing the 4-cell battery pack under

2 different conditions. The first condition is a SOH oblivious pack, or more understood

as a fixed series-parallel configuration that is traditionally used. The second condition is a

SOH aware reconfigurability system that is being studied in [61]. The results can be seen
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Figure 1.61: SOH aware reconfiguration experimental results [61]

that in all cases of C-Rate used, the pack that is reconfigured with SOH in mind results in a

higher deliverable capacity. In addition, the voltage profile throughout the discharging event

is altered from the system level, and needs to be considered for the EMS to understand the

optimal decision strategy.

Cell Failure Optimization

Handling faults within the system is essential when dealing with the voltage and power

capabilities of larger sized energy systems. For vehicles like a Tesla Roadster, the battery

pack consists of approximately 6,800 cells [64], and when a cell fails the ability of the system

to handle that issue is crucial to vehicle performance. If a cell fails in the Tesla vehicle, in

some cases the entire series string becomes unusable, and in other cases the entire pack

needs to be shut down to prevent unsafe operation. Implementing a reconfiguration network

with faulty cells kept in mind is another optimization strategy that is crucial for long term

battery pack utilization.

Figure 1.62: 1 series string reconfiguration for a faulty cell within the system [63]
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[63] explored the potential of utilizing dynamic reconfiguration for handling when a

cell fails within a battery pack. Figure 1.62 shows the initial ideology for when the EMS

detects a fault, how the reconfiguration can re-design the series-parallel topology to remove

the faulty cell from the network. However, this has several system performance impacts, in

this case the system loses more than just the faulty battery. Depending on the configuration

flexibility and the location of the faulty cell, the resulting impact could be detrimental to the

system performance. Although, it should be noted that even if the performance is drastically

impacted in the system, this would still be more performance that can be extracted from the

battery pack in contrast to cell failure in traditional fixed series-parallel topologies.

Figure 1.63: Faulty cell reconfiguration with more than 1 series string [63]

Figure 1.63 shows the final approach that [63] took to optimize the performance ca-

pability of a battery pack when a cell failure occurs. This is crucial though, to understand

that the reconfiguration flexibility is crucial when a cell failure arises, and depending on the

flexibility and the location of the cell failure, the resulting configuration options are selected

by the EMS. Ideally, the cell failure would be a location where the reconfiguration flexibil-

ity allows to utilize all the remaining cells and allow parallel strings to ensure the system

requirements for both voltage and capacity.

Reconfiguration Assisted Charging
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If a reconfiguration network is applied to a system, the ability to more efficiently charge

the system needs to be explored. In [58], a study on how to more efficiently charge a battery

pack was performed in comparison to utilizing a traditional commercial charger. Due to cell

imbalance in a system, battery balancing throughout operation is crucial to maximizing the

efficiency of charging so that the pack can deliver the most capacity on a consistent basis.

Figure 1.64: Flowchart for reconfiguration assisted charging [58]

Figure 1.64 shows the EMS decision flowchart that would be used in reconfiguring the

battery pack and charging process. [58] proposes a category by category charging method,

which consists of grouping the cells by a graph theory representation of cell voltage. The

flowchart consists of charging a specific category, and for the method selected in this study,

an example of this could be a group of cells with the same OCV. Different categories would

be dependent on the separation of OCV’s of all the cells in the system. However, this

method might require a longer time to charge the system, but the results shown in this study

suggests a more energy efficient process to ensure maximum deliverable capacity following

the charging event.

Table 1.3 shows the results from the experiment in [58] for a more efficient charging

method. After all the system was charged, both the reconfigurable and non-reconfigurable

battery pack was discharged fully. The resulting discharge capacity of each battery pack

was calculated to populate the table. The f corresponds to the voltage imbalance within the

battery pack, meaning the larger the f , the larger the separation of voltages from cell to cell.
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Table 1.3: Delivered Capacities (mAh) based on cell voltage imbalance and charging
method [58]

f Cell #1 #2 #3 #4

0.1 Reconf. 2619.5 2636.8 2617.6 2670.5
Non-Reconf. 2508.5 2607.7 2613.7 2660.7

0.3 Reconf. 2607.6 2560.6 2608.6 2660.0
Non-Reconf. 2597.3 627.8 2576.8 2459.0

0.5 Reconf. 2616.4 2628.5 2611.1 2665.2
Non-Reconf. 2622.3 2510.3 2492.6 2304.3

0.7 Reconf. 2606.5 2614.8 2595.6 2646.3
Non-Reconf. 2597.9 2046.1 857.7 2253.8

0.9 Reconf. 2617.9 2633.0 2610.9 2670.2
Non-Reconf. 1566.4 2580.1 2340.3 2663.3

f Cell #5 #6 #7 #8

0.1 Reconf. 2706.3 2582.0 2657.9 2621.9
Non-Reconf. 2611.6 2575.6 2593.6 2606.5

0.3 Reconf. 2694.5 2567.7 2644.4 2609.6
Non-Reconf. 2432.7 2458.2 2647.7 2276.7

0.5 Reconf. 2704.2 2577.6 2650.8 2611.8
Non-Reconf. 2364.4 2222.4 2526.6 2610.6

0.7 Reconf. 2682.0 2555.1 2632.6 2593.6
Non-Reconf. 1821.6 2553.6 2499.8 2300.0

0.9 Reconf. 2714.4 2579.4 2649.9 2606.7
Non-Reconf. 2140.1 541.3 2501.5 2614.3

Intuitively, as f gets larger, the more demand of an efficient charging process is needed, as

can be concluded from examining the results within Table 1.3.

Figure 1.65: Capacity versus number of cells [58]

Figure 1.65 shows the additional experiment in [58] to characterize the need for a better

charging method as the number of cells in a system increases. As can be seen, the perfor-

mance of the reconfigurable battery pack remains constant as the number of cells increases.
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This can be attributed to the process of category by category charging of the system. How-

ever, as the number of cells increases for the non-reconfigurable battery pack, the deliverable

capacity begins to decrease and resulting in higher error ranges.

In terms of the EMS, cell imbalance will always be an issue within battery systems.

How the EMS can efficiently use the cells within the pack will determine the limitations of

which the pack can be used. If the EMS can utilize dynamic reconfiguration, even if solely

for charging purposes only, the deliverable capacity of a fixed series-parallel discharging

topology can increase compared to traditional EMS procedures.

1.6 Chapter Summary & Research Opportunities

This chapter outlined the state-of-the-art for Li-Ion battery management technologies.

The various methods from sensor, algorithms and control strategies have been extensively

investigated and discussed. While many aspects of an EMS have been identified and dis-

cussed, some have been identified as potential areas of interest for extended work.

Based on all the topics that have been introduced, there have been 3 main areas of inter-

est that have been identified for further investigation. The first area of interest is the State of

Energy Criterion which shows some intriguing capability, and raised several questions for

use in EMS that current literature has not addressed.

• Direct comparison of how the SOE model relates to SOC while a Li-Ion Battery is

being cycled

• Does the SOE model give a more computationally inexpensive result for range predic-

tion in comparison to using SOC modeled with voltage to determine a range prediction

• How does the SOE vs SOC model differences change as a function of temperature or

cell aging

The second area of interest is understanding the battery dimensional changes. In liter-

ature, the main areas of focus have been on thickness measurements of the cell via position
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sensors on the face of the battery. However, commercially this isn’t practical, since open

space in the battery pack is extremely small. Due to this, applying a sensor device directly

on the battery is critical, while ensuring that the sensor size is kept minimal. Several re-

search paths have been identified in this topic that have not been discussed in literature, and

are introduced here.

• Directly apply strain gauge onto the cell to have individual cell to SOC lookup based

on dimensional change

• Directly compare the sensor measurements for a strain gauge as well as thickness

measurement sensors to understand any differences, or benefits from using one sensor

over another

• Investigate the potential of using the battery dimensional change after dynamic current

events as an SOC lookup method to mitigate the need for rest time to perform an OCV-

SOC lookup

The last area of interest has been identified as DR. In literature, this concept is rela-

tively immature, and has only been investigated for small pack sizes, and only performed a

few discharge cycles. Due to the relative immature technology, there have been numerous

research interests that require further investigation, and have been listed here.

• How does DR performance compare to traditional static model as cells are aged

• Does performance improvements, or application flexibility change as the size of the

battery pack increases. Does the performance improvement change linearly with pack

size, or is there a unique relationship

• How does the number of switches per cell ratio effect performance improvements

as the battery pack size increases. Is there a constant performance improvement, or

another unique behavior that would need to be taken into account for designing the

technology for a specific application



61

Chapter 2

State-of-Energy Model

2.1 Experimental Test Setup

Hardware Testing Setup

This section will describe the testing setup that will be used to perform the analysis dis-

cussed in subsequent sections. The testing equipment was donated from Johnson Controls,

and placed in the Wisconsin Energy Institute (WEI). The testing equipment was purchased

from Digatron, and has a large range of capabilities from testing small cell level equipment,

to larger battery pack sized equipment. The specific testing capabilities include:

• 96 voltage and 48 temperature sensing channels

• 8 100V/100A circuits for battery module testing

• 18 variable charge/discharge circuits for cell testing

• 12 electrochemical impedance spectroscopy channels

• 3 thermal chambers, fully monitored

• 1 FILR thermal camera to assist in analysis

Figure 2.1 shows the Digatron testing station with the physical testing equipment behind

the desk space shown. Additionally, Figure 2.2 shows the 3 testing chambers where the cells

were placed to keep at constant temperature, but also protect the rest of the lab if any batteries
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were to enter an unsafe operating condition and enter thermal runaway. Safety systems were

designed and installed to work alongside the Digatron system, and monitored for both gas

and smoke sensors. All circuits and chambers are connected in series to relays, so in the

event that a gas or smoke sensor is tripped in one chamber, the entire Digatron system shuts

down and isolates everything within the system.

Figure 2.1: Front view fo the test station used to control the Digatron system to perform battery tests

Figure 2.2: Battery test chambers that housed the physicals cells during battery tests to keep temperature controlled

Lithium-Ion Cells Used

The cells used for all experiments in this research project were provided by Johnson

Controls, and one cell is shown in Figure 2.3. Note, that these cells are a prismatic can

cell design. It is important to note, that for comparing SOE and SOC, the voltage profile is

the key factor in model difference, and since the voltage profile is chemistry dependent, the

exact model differences could vary between battery chemistries. This fluctuation in model

differences could be significant, and can be studied in future work with various chemistry

types experimentally studied in the same CCCV format.
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Figure 2.3: Li-Ion cell used for all experimental testing in research project

The voltage profile for the cells received from JCI can be seen in Figure 2.4 as reference.

Note, that this profile is strictly chemistry dependent, which ultimately leads to conclusions

from this chapter would need to be verified across numerous battery chemistries if commer-

cially applied across applications.

Figure 2.4: OCV curve of cell provided by Johnson Controls

Additionally, the cell specific characteristics can be found in Table 2.1. Both electrical

and mechanical characteristics are included in the table. Note that the cell rated capacity is

a good starting point, but in all cases, a capacity check will be done to determine the actual

cell capacity for each cell used. This capacity value used will be significant, especially when

being used to normalize the models in SOC and SOE discussed in this chapter.
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Table 2.1: Electrical and Mechanical Characteristics of the Li-Ion cell provided by Johnson
Controls

Nominal Voltage 3.65V
Typical Capacity (C rate, +20 Celsius) 5.6Ah

Minimum Capacity (C rate, +20 Celsius) 5.3Ah
Maximum Voltage (Continuous) 4.1V

Maximum Voltage (Pulse) 4.2V
Minimum Voltage (Continuous) 2.7V

Minimum Voltage (Pulse) 2.5V
Cell Height 85 mm
Cell Length 120 mm

Cell Thickness 12.5 mm
Cell Weight 240 g

2.2 Investigation of SOC vs SOE Model Differences

SOE is a immature concept that is still being investigated in literature previously dis-

cussed in Section 1.3.5. Since this is a relatively new concept, the investigation into potential

advantages and disadvantages hasn’t been extensively researched. Due to this, there hasn’t

been significant work into fundamentally understanding the difference in model results that

SOE provides in comparison to SOC. As discussed in Section 1.3.1, the SOC algorithm is

essentially a current integral that is normalized by the cells rated capacity. When expand-

ing to the newly proposed model of SOE, the current integral is transformed into a power

integral that is normalized by the cells rated energy. Understanding how the voltage profile

effects the range prediction in a vehicle is critical for comparing between both SOC and SOE

model results. If SOC is consistently under-predicting the remaining range of the batteries,

then the application is prematurely shutting down. Understanding how the SOE model re-

sults compare to SOC is critical to ensuring accurate battery shutdown as well as extracting

the maximum amount of energy from the battery system in a safe and efficient manner.

This investigation is rather straight forward to perform, where the post processing is

the critical step to understand the model result differences. Performing a few CCCV cycles,

while collecting the data for voltage, current, and time, the current (SOC) and power (SOE)

integrals can be calculated to understand how each respective model performs under ideal

conditions. Since we want to first understand the model differences, it is reasonable to do all
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model comparisons as a post processing test style, where the exact capacity and energy of

the cell (from the discharge event just completed) can be used to run the integrals. However,

it is important to note that in an application scenario, this wouldn’t be employed to operate

both models, in which case creating specific real time models for each SOC and SOE would

need to be done. However, since we want to first understand the best case scenario difference

between models, the post processing method should be investigated first, with the option in

the future to study real time predictive algorithms for SOE modeling to then compare to

SOC models.

In order to investigate the difference between models, first defining the algorithms em-

ployed for each respective model needs to be introduced. Equation 2.1 introduces the algo-

rithm that will be used to track the SOC for the CCCV testing. Note that the capacity value

used to normalize the integral is the total Ah discharged from the cycle, which would include

the Ah removed during the current tapering region (constant voltage region). Additionally,

Equation 2.2 introduces the algorithm that will be used to track the SOE for the CCCV test-

ing. Note that in this case, the equation is normalized by the exact energy removed from

the cell during the discharge, including the current tapering region. In both equations, he is

the efficiency associated with the current applied where in most cases the efficiency can be

approximately to 1, but in extreme cases, the exact value needs to be tracked and included

for model accuracy.

SOC% =

R t1
t0 heI(t)dt

Cn
⇤100% (2.1)

SOE% =

R t1
t0 heV (t)I(t)dt

En
⇤100% (2.2)

Utilizing Equations 2.1-2.2, the post processing for the CCCV experiments is all that is

needed to directly compare the difference between both SOC and SOE models previously

defined.
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2.2.1 Discharge Event Comparison SOC & SOE

Experiments were performed to study the discharge capability, as well as model differ-

ences between SOC and SOE models when discharging cells from a fully charged state, to a

fully discharged state. In order to do this, a CCCV method was executed at various C-Rates

and ambient temperatures to get a vast understanding of the model behaviors. CCCV was

executed by starting the cells at a fully charged state, and discharging the cell at a constant C-

Rate until the lower voltage limit was reached. At this point, the constant current event was

finished, and the constant voltage event begins until the current was below 100mA. For this

experiment, 5 cells were operated under the same conditions, and 3 charge-discharge cycles

were performed for all test conditions (ambient Temperatures, and C-Rates). Due to this,

statistics were performed to obtain average values, with error bars added to the plots to show

any deviation between the 5 cells, and additionally the difference in the 3 charge-discharge

cycles.

Figure 2.5 shows the voltage and current experimental results from the CCCV experi-

ment. Note that this figure shows the average value of the 5 cells, as well as the 3 charge-

discharge cycles. The error bars are on the plot, but the error between the cells is so small,

the error bars visually look like black dots along the lines. Note, that since the cell to cell

variation is small for this cell, the conclusions to follow are dependent on the reproducibil-

ity across numerous cells. Additionally, the cells were tested under numerous C-Rates to

understand any potential impact of SOC to SOE based on severity of C-Rate. Examining

the results in the figure, its important to note the significance that the C-Rate has on battery

performance in general. The CCCV protocol contains two main regions, one as constant

current, and the second as constant voltage. From the figure, it is clear to see that the con-

stant current region relative to the full time in the discharge event decreases when moving

from lower C-Rates to higher C-Rates. This may seem relatively obvious, but this is impor-

tant at this stage, since the lower voltage limit in most cases would signify approximately

0% SOC.

Understanding the results in Figure 2.5 is needed to extend the analysis to understanding
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Figure 2.5: Experimental results at room temperature for single discharge event where top plot is showing Voltage, and
bottom plot showing Current vs time relationship

the SOC and SOE models for the set of experiments. Since there are effectively two aspects

to this CCCV test, understanding where the switch from the constant current to constant

voltage region occurs for each respective C-Rate was needed to be understood in order to

understand any change in slopes for the SOC or SOE model profiles. This figure also serves

as a proof of experiment to show that the correct CCCV protocol was evaluated, so that

subsequent figures can be examined adequately.

Figure 2.6 shows the SOC and SOE algorithms for the experiment across all of the

C-Rates at room temperature. Examining these results and drawing comparisons between

the models can be done, however it is challenging due to the similar profile and values of

the respective models. Since the only difference between the models is SOE incorporates

voltage into the integral, the variation in results can be minimal. However, the voltage of

the cell can be greatly effected by the C-Rate of the cell, so it is intuitive to think the SOE

model will be greatly effected by the C-Rate used.

In order to more adequately compare the models, a new calculation needs to occur.

Understanding directly how the SOC and SOE models differ in real time are critical to

understanding any potential benefits of the SOE model. Equation 2.3 shows the formula
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Figure 2.6: Experimental results at room temperature for single discharge event where top plot is showing SOC, and bottom
plot showing SOE vs time relationship

for DSOCSOE in order to directly understand the model differences. Looking further to

Figure 2.7, the models were directly compared by employing Equation 2.3 throughout the

experimental data.

DSOCSOE[t] = SOC[t]�SOE[t] (2.3)
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Figure 2.7: DSOCSOE vs time experimental results at room temperature (25 degrees Celsius)

file:///Users/ryanhickey/Library/CloudStorage/GoogleDrive-ryan.p.hickey2@gmail.com/My%20Drive/resume/Website/Files/Figures/Chapter2/roomTempDeltaSOCSOE.fig
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Figure 2.7 is perhaps the most critical plot in this experiment to understanding how

these models differ in a discharge event. Understanding this figure is critical, and perhaps

most important is understanding the peak value of difference between SOC and SOE is

dependent on C-Rate used. The 5C-Rate shows the largest variation between the SOC and

SOE model, while the 0.5C-Rate shows the least variation. When an EMS would use both

models, understanding the peak value of error relative to the C-Rate being used is critical in

order to make the correct EMS decision.

Due to the interesting correlation between SOC and SOE for the C-Rate employed at

room temperature, the desire to understand if this same relationship holds true at alternative

ambient temperatures is desired. In order to gain an understanding of model performance at

ambient temperatures other than room temperature, selecting temperatures to study on both

the higher and lower end of room temperature is desired. For this study, 10 degrees and 45

degrees Celsius were selected to be studied.

Once again, the CCCV protocol was performed at both 10 and 45 degrees Celsius.

This data was then post processed the same way as the room temperature data previously

discussed, and subsequently, drawing analysis across these three temperatures is ideal to

understanding the models performance across a wide temperature range. With these 3-

dimensional plots, it is important to note that only the three temperatures were tested, and

on the figures they are denoted by the thicker colored line plots. However, for visual analysis,

the surfaces were drawn between these temperatures so that conclusions can be drawn for

model behavior across all temperatures between the experimentally tested.

Figure 2.8 shows the voltage and current profiles for all three temperatures to ensure the

desired test protocol was achieved. Once again, the test profile exhibits a two part profile,

where the first is the constant current region, followed by a constant current region. The

profile throughout both of these regions stays relatively similar across the range of tempera-

tures tested, so further analysis needs to be performed in order to visually, and analytically

see performance differences. In order to achieve this, the post processing analysis of SOC

and SOE models were calculated in order to understand the temperature effect on the SOC

and SOE models.
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Figure 2.8: Experimental results at multiple temperatures for single discharge event where top plot is showing Voltage, and
bottom plot showing Current vs time relationship

Moving further to understand how both the SOC and SOE models behave across these

three different ambient temperatures, Figure 2.9 shows the calculated models in 3-dimensional

plots comparing the discharge event across the various ambient temperatures tested. Once

again, due to the similar nature between the models, conclusions were difficult to draw from

examining these surface plots. While there can be some conclusions relative to each indi-

vidual C-Rate profile being effected by the temperature changes, drawing comparisons from

each subplot for both SOC and SOE models are still not plausible. This can be deduced

by the only difference between the models being the SOE incorporating voltage into the

integral, and the voltage profile found in Figure 2.8 shows very minimal changes in value,

especially in the middle ranges of the discharge event.

Utilizing Equation 2.3 again will allow better visualization of the model differences,
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Figure 2.9: Experimental results at multiple temperatures for single discharge event where top plot is showing SOC, and
bottom plot showing SOE vs time relationship

and allow justifiable conclusions to be drawn. Figure 2.10 shows the DSOCSOE calcula-

tion to help visualize the model differences during a discharge event across a spectrum of

temperatures. Note, that the peak value is still C-Rate dependent, but as the temperature is

changing, the trend for peak error changes as well. However, the change of the peak value

for each respective C-Rate does trend from the highest difference (at lower temperatures) to

a smaller model difference (at higher temperatures). This variation in performance can be

attributed to the effect that the battery voltage has with respect to temperature. The overall

battery voltage is largely effected by changes in temperature, and the SOE model incorpo-

rating the voltage into the integral while the SOC model does not would result in the model

differences being effected by temperature as well.

If utilizing the SOE model alongside an SOC model in an EMS, any control decisions

that are made based on model differences alone needs to fully understood the situation that

the system has been exposed to, both in C-Rate but also based on ambient temperature. The

experiments focused on understanding the C-Rate dependence for the model differences
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Figure 2.10: DSOCSOE vs time experimental results across multiple temperatures

first, then extended to multiple temperatures to understand the dependence beyond just C-

Rate. If this correlation seems plausible in a real world application, the next step is to fully

understand how these model differences behave as the battery is aging.

2.2.2 Aging Effect on SOC-SOE Model Variations

Previous investigations focused on single discharge event behavior, but understanding

how these models behave as a battery is aged is needed for any future consideration in

commercial applications. In order to do this, 3 batteries for each C-Rate were aged with

the same CCCV protocol used for the single discharge event, however these results were

continued on until the batteries reach failure. Failure criteria for this experiment is defined

as when a battery reached 80% SOH. This is measured by comparing the discharge capacity

in the individual cycle, relative to the discharge capacity achieved in the first cycle of the

experiment. Two C-Rates were used in this experiment, 5 and 2 C-Rate. From a time

perspective, these rates wouldn’t take more than 8-9 months to age the batteries at room

temperature, while still providing crucial information about the model differences in a C-

Rate range that is widely used in commercial applications.

Since an aging study is being performed for the batteries, tracking the capacity relative

to the C-Rate being applied is needed to understand the profile of how the battery capacity

fades. Additionally, tracking the battery capacity for each respective C-Rate will serve as the

file:///Users/ryanhickey/Library/CloudStorage/GoogleDrive-ryan.p.hickey2@gmail.com/My%20Drive/resume/Website/Files/Figures/Chapter2/allTempsDeltaSOCSOE.fig
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validation criteria to ensure that the battery has reached failure criteria (e.g., 80% capacity

remaining). Figure 2.11 shows the capacity curves for both 2, and 5 C-Rates as the batteries

were aged. The figure also contains a line indicating the 80% value of capacity that needs

to be reached in order to classify the batteries as "failed". Note that both C-Rates (5 and 2)

reached the failure criteria denoted by the black line in the figure. Since they both failed,

further figures can be examined to study the aging effect between the SOC and SOE models.
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Figure 2.11: Capacity tracking to monitor when each respective C-Rate being tested reaches the 80% failure criteria

After understanding the capacity curves for each respective C-Rate, examination of the

voltage profiles for these C-Rates as the batteries were aged is an essential first step. Figure

2.12 shows the 3-D plot for the voltage profile data as a function of cycle number, and the

individual discharge event. As expected, the voltage profiles seem relatively unaffected as

the battery was aged to the naked eye. However, there were slight changes to the profile

over the batteries lifetime. In order to visualize this voltage change effect, moving further

to examining the SOE model will reflect any voltage effect incorporated. However, showing

just the SOE model might be redundant, as shown in previous sections, but moving straight

to the important criteria for this study seems adequate. Prior sections showed that the fig-

ures showing solely the SOC, or SOE model were difficult to understand any differences,

resulting in skipping these figures in order to directly understand the model differences as a

function of aging.
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Figure 2.12: Voltage profile for each respective discharge as a function of the cycle, to show how the voltage profile evolves
alongside aging of the battery

Since the capacity, and voltage curves have been studied, moving forward to the re-

lationship denoted by DSOCSOE is necessary to understand any model differences as the

batteries were aged. Recall, that all of the cells failed, so understanding close to the end of

life behavior is important to understand how these models behave prior to any failure events.

Figure 2.13 shows this DSOCSOE data, and remembering the profile behavior in the prior

sections is needed to understanding the aging effect. Initially, note that the relative profile

remains rather uniform as the battery is aged, with the exception that the actual values for

peak difference might change, the overall shape of the curve seems to remain intact.
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Figure 2.13: DSOCSOE vs cycle showing the discharge curve to understand how the model differences behaves as the battery
is aged to failure
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A few key aspects can be derived from examining the figure for SOC-SOE model dif-

ferences. First and foremost, the profile of the model differences remains relatively constant

in each cycle as the battery was aged. This is important, because this allows the potential

for a predictable profile as a function of battery aging. Secondly, the end of life behavior

seems unaffected by the model differences. This is important to understand, since predicting

performance when the batteries become severely aged, or degraded, becomes more critical.

Lastly, the peak value for model differences as a function of cycle increases as the battery

ages. Essentially, this means that the batteries voltage profile is changing as the battery ages.

Since the model difference increases as the battery ages, this says that the voltage being in-

corporated into the integral for the SOE model has significant impact on the resultant model

output.

Since the aging shows to effect the model differences, some potential paths forward can

be constructed to further understand the resulting models. Since the voltage being incorpo-

rated into the integral for the SOE model, does the voltage evolution as a function of aging

show some type of over-degradation that the SOC model does not detect? In an application

scenario, specifically for applications that have DOD less than 100%, the model differences

are on the order of approximately 2-4%. Therefor, if a application shuts the battery pack

down when the lower SOC limit is reached, the resulting SOE model would have hit its

limit sooner than the SOC model. Thus, would shutting the pack down sooner (when the

SOE model reaches the lower limit, but the SOC is still above the limit), result in minimizing

the battery degradation and/or prolonging the life of the system? If shutting down the pack

based on the SOE model prolongs life by reducing the degradation factor, a trade off would

need to be well understood to make sure the sacrifice in discharge energy during the cycle is

compensated by more throughput prior to the battery failing.

2.3 Chapter Summary

This chapter introduced and analyzed the model differences between SOC and SOE

under numerous different test conditions. First, the models were compared for a single
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discharge event at room temperature for numerous C-Rates. The model difference between

SOC and SOE was found to be C-Rate dependent, as the peak value of model differences was

found to increase as the C-Rate increased. Secondly, the model differences was studied as

a function of the ambient temperature of the system. The model differences showed similar

profile characteristics as how voltage is affected by temperature. Since the model differences

plot showed that the difference becomes smaller at elevated temperature, this shows that the

model difference is largely effected by the voltage variation, which was largely effected

from the ambient temperature change.

Lastly, an aging experiment was performed to understand how the model differences

between SOC and SOE behaves alongside battery degradation. The profile showed that

model differences remain relatively consistent, however, the peak value of model differences

seemingly increases as the battery is degraded closer to failure. Due to this profile evolution,

future consideration for the impact of these model differences was proposed. Since the SOE

model incorporates voltage into the integral, it seems as though the SOE model considers

the voltage aging throughout battery degradation that the SOC model does not track. Due

to this, consideration as to whether shutting down the battery system based on SOE instead

of SOC might result in lowering the degradation rate of the battery, since the SOE model

gives degradation indicators through the voltage signal that the SOC model does not have

the capability to do.
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Chapter 3

Battery Dimensional Changes for

Instantaneous SOC Lookup

3.1 Measuring Battery Dimensional Changes for SOC Lookup

Measuring battery dimensional changes was introduced and discussed in Section 1.4.1,

but sparked an interest for potential application to help improve battery systems capability.

Previous work on measuring battery dimensional changes was to understand if and how the

batteries dimensional changes corresponds to the operating voltage of the battery. However,

applying this concept to how the EMS controls and protects the battery, their is unanswered

questions that need to be understood if this dimensional changes corresponds to SOC as

well. Tradition EMS methodology uses SOC tracking during real time operation, and at

times of rest, the EMS performs an OCV-SOC lookup to perform an "SOC Adjustment".

However, this OCV-SOC lookup method can only be performed after the system has been

at rest. For a DES application, traditional time to wait is 5 minutes, but the more rest time

demanded, the higher the SOC accuracy there will be.

From an EMS perspective, if this demanded rest time for SOC adjustments can be mit-

igated, the overall battery pack throughput across a year, or even the pack lifetime will

drastically increase. The goal of this study is two-fold. The first is to understand if mea-

suring dimensional changes can be done locally on a battery in a volume conscious manner

(e.g., strain gauges). The second is to understand how the battery dimensional changes are
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effected after the system is put to rest. If the battery dimensional changes polarizes simi-

lar to the cell voltage, then the need for this sensor wouldn’t exist. However, if the battery

dimension stays stagnant after the current is changed to zero, then the battery dimensional

changes to SOC method could be used as an instantaneous SOC lookup method to mitigate

rest time in operation.

3.1.1 Measuring Battery Dimensional Changes

A few measuring techniques were described in Section 1.4.1, and deciding which ones

to investigate for use in this battery dimensional change to SOC lookup method is critical to

the success of this research. Both thickness measurement and implementing strain gauges

show promise for techniques to investigate. Thickness measurement, because it directly

measures the dimensional change of the battery, but it is not a practical method. A real

application will not have the volume to have this type of apparatus set up around each battery

in the system. Strain gauges however, offer a volume effective method to monitor each

individual battery in a system. Ideally, a correlation to the strain of the battery to the battery

dimensional change, and ultimately to the SOC of the battery can be made. In previous work,

the strain gauges were not implemented locally to the battery, they were mounted to a tie rod

that is used to hold plates together across a string of batteries (typically 5-6 cells together).

So for this work, implementing strain gauges locally to a single battery while having the

measurement accuracy to correlate to SOC is critical to the success of this research.

Methods for Monitoring Dimensional Change

Several methods for monitoring battery dimensional changes were discussed in detail in

Section 1.4.1, and should reference back for the needed information. However, the purpose

of this chapter is to understand the extended work needed, and potential areas within this

focus area where an advancement in battery system performance can occur. Understanding

that the strain gauge method offers the volume sufficient sensor capability to actually apply

this technology in a commercial setting, strain gauge monitoring will be the target method to
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monitor battery dimensional changes. However, additionally monitoring the battery thick-

ness via position sensors is desired as a additional validation method to guarantee accurate

readings from the strain gauge correlation.

Experimental Test Stand Hardware Setup

The hardware setup for this experiment is comprehensive in order to achieve the multi-

ple measurement systems needed for this technology. First, Digatron systems were used to

record the battery related data such as: Voltage, cell temperature, current, etc on the battery

side. Details for this system can be found in Section 2.1. For the position sensor, a Versatile

Data Acquisition System (VDAS) is used to record the position reading of the Mitutoyo

position gauge. Additionally, the VDAS system records the battery voltage, as a means to

synchronize the data collected between the Digatron and VDAS systems. The strain gauges

were positioned on the cell, and utilizing a wheatstone bridge electrical circuit, the voltage

output from the wheatstone bridge will be connected to a voltage sensor that the Digatron

system reads. Note that these voltages were collected alongside the battery related events,

so no data synchronization is needed here.

Figure 3.1: Experimental test stand used for monitoring strain and thickness measurement of batteries alongside battery
testing
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Figure 3.1 shows the full test stand setup inside the battery testing chamber. The wheat-

stone bridge is found on the custom made PCB board (with red LED light) mounted behind

the cell. The DC power source to the left is used as the excitation voltage measurement for

the wheatstone bridge. The VDAS system is positioned in the chamber directly below the

battery. Two levels of vibration pads were installed into the stand to reduce any potential

signal noise that the strain gauges would be recording due to the test conditions of the lab

where the stand is located.

Figure 3.2: Cell holder view showing strain gauge connections, along with the thickness gauge

Figure 3.2 shows the holder that the battery is placed in prior to inserting the battery into

the test stand and connected to the Digatron and VDAS systems. Note that the battery is in

a fixed location, and cannot move in any direction. The battery is on a flat surface on the

bottom, with minimal contact on the top surface of the battery (to reduce any possible effect

on the battery dimensional change due to the fixed constraints), and the Mitutoyo position

sensor is fixed to the metal plate with the position probe placed directly in the center of the

battery surface.

Figure 3.3 shows a side view of the battery holder in order to see the point of contact for

the position sensor to the battery. Additionally, two of the three strain gauges can be seen in

this view. Placement of the strain gauges will be discussed further in the following section.
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Figure 3.3: Side view of battery holder to see thickness gauge contact point on battery

3.1.2 Strain & Thickness Gauge Implementation on Batteries

The placement of the dimensional changes devices were critical to interpreting the quan-

titative value of change during battery cycling. On a prismatic cell, the value of dimensional

change will differ for each surface on the battery. Figure 3.4 shows the top face view of the

cell, and this is the surface that the most dimensional change will occur. Since we will see

the most dimensional change here, a strain gauge is desired to be on this surface. Addition-

ally, a position sensor needs to be set to this surface so that a correlation between battery

thickness and surface strain can be made.

Figure 3.4: Front side view of the cell showing position of the strain sensor, where the red circle shows the location of the
sensor
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Figure 3.5 shows a enhanced close up view of the strain gauge location on the battery.

Note the position of the strain gauge itself relative to the battery. The strain gauge is placed

slightly off center, since the Mitutoyo position sensor will be placed directly in the center. By

placing the strain gauge slightly next to the position sensor location, the two measurements

should be reasonably comparable when correlating to SOC.

Figure 3.5: Close-up view of the strain gauge mounted on the front surface of the cell, where the red circle shows the location
of the sensor

Figure 3.6 shows the location of the additional strain gauge on the back side of the

battery. Note that in this case, the strain gauge is offset from center, so that its location is

identical to the strain gauge on the front surface. The goal of this sensor is to have virtually

identical strain measurement readings compared to the front sensor, in order to validate that

both sensors were reading accurately to the battery behavior.

Figure 3.7 shows the final strain sensor placed on the battery. Note that this sensor is

not on the location of the battery where the most dimensional change will occur, however

it is in a strategically placed location for analysis. The cell design placed a vent location

here, which is essentially a thinner thickness location of the metal in order to intentionally
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Figure 3.6: Backside view of the cell showing the location of the third strain sensor on the cell, where the red circle shows
the location of the sensor

burst when pressure internal to the cell gets to a critical level. Due to this thinner material

location, the surface will theoretically show more rapid deflection. Placing a strain sensor

here, we hope to see a much more sensitive and rapid signal. If successful, this work could

lead to an engineering design process for the cell casing, where a ideal location for the vent

and strain sensor will be designed into the cell prior to production to make the best region

for strain measurement.

Figure 3.7: Top view of the strain gauge mounted on the vent location of the cell, where the red circle shows the location of
the sensor

3.2 Battery Cycling Analysis with Implemented Dimensional

Change Sensors

The first goal of this research is to understand the viability of applying strain gauges

directly to an individual battery for battery dimensional change measurements in real-time.

Prior research discussed in the Literature Review showed strain gauge implementation for

dimensional change measurement by applying the strain gauge to tie rods that were used

to hold a string of batteries together. The prior work typically had 5-6 batteries in series,

stacked side by side with the tie rod strain change reflecting the lumped dimensional changes
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of all 5-6 batteries. In order to implement this technology with the purpose of SOC adjust-

ments instead of OCV-SOC correlation, the strain correlation must be battery specific. Ul-

timately, this means that the strain measurement cannot be a lumped change measurement

across a string of batteries, but must be mounted to each battery individually.

Prior sections in this chapter showed the strain gauge, and thickness gauge sensor lo-

cations for the experiments, and the first set of experiments purpose were to validate strain

gauge measurement potential local to the battery. The test ran via Digatron software is

a simple CCCV cycling protocol, with strain, thickness, and battery parameters (Voltage,

Current, etc.) being recorded and synchronized accordingly. First, examining an individual

cycles performance is adequate to understand the strain gauge readings, and then further

examination to cycle life would be necessary to understand commercial viability. Figure 3.8

shows a single cycle curve where the battery is initially at 100% SOC and discharged via

CCCV to 0% SOC, rest for 10 minutes, and then charged via CCCV back to 100% SOC.

Both voltage, and the thickness sensor measurements are shown in the figure, where the

voltage curve corresponds to the primary y-axis, and the thickness sensor corresponds to the

secondary y-axis. Note that the secondary y-axis units is normalized, which is done to be

able to overlay the thickness measurements with the strain sensors in future plots in order to

directly compare the sensors curves relationship to voltage directly against each other.
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Figure 3.8: Single cycle comparison showing voltage profile alongside the normalized values for the thickness gauge

Figure 3.8 was performed with a 1C-Rate, which is slow enough to reasonably assume

the physics behind the battery expansion/contraction has adequate time to take place, which

file:///Users/ryanhickey/Library/CloudStorage/GoogleDrive-ryan.p.hickey2@gmail.com/My%20Drive/resume/Website/Files/Figures/Chapter3/singleData_thicknessGauge.fig
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is reflected in the thickness sensor curve relationship. From this figure, it is reasonable to

conclude that this battery specific chemistry is viable to monitor battery dimensional changes

and compare them to a voltage, which ultimately could mitigate the OCV-SOC need and

instead draw a thickness-SOC comparison. Now that the thickness sensor measurement

seems to be adequately measuring the specific battery dimensional change, looking forward

to analyzing the three strain gauges implemented on the battery is needed.

Figure 3.9 shows the normalized strain curve for strain gauge 1 (note strain gauge 1

was introduced in the prior section to identify a specific location) during the same CCCV

cycle shown for the thickness gauge. First off, the curve for this strain gauge shows sig-

nificantly more noise than the thickness gauge, which can be contributed to a multitude of

factors. The first factor, is that the strain system was a simple wheat-stone bridge made in

the lab as a quick test to study the viability, and the noise could be significantly reduced

by implementing a robust, industry designed strain gauge measurement system (e.g., adding

temperature compensation strain gauges, reduction of wire noise, etc.). However, the scope

of this project was vast enough, that financial resources could not be dedicated to purchase a

highly accurate system in order to study this at the current stage of this research. Although,

the purpose of this study is to understand if this technology can be used, and the perfect

measurement is not necessary since this is not moving directly into a commercial applica-

tion. Future work in this area could dedicate a financial investment to make a more robust

measurement system in order to study exact values for an application use.
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Figure 3.9: Single cycle comparison showing voltage profile alongside the normalized values for the strain gauge 1
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Strain gauge 1 certainly showed more noise than the thickness measurement, which is

fine, as long as the profile of the curves show the same results overall. At 25-55 minutes,

the measurement seems to drop, and then bounce back, which was concluded to be resulting

from external noise in the lab. The main source of this noise was a dynamometer that is

within close proximity to the equipment that was testing high speed electric machines, and

unveiled an important aspect of this strain gauge technology application: vibration. Seeing

this result, an in-depth understanding of any surrounding vibration is crucial in order to

maintain the integrity of the strain-SOC correlation.

Since strain gauge 1 showed an increase in sensor noise compared to the thickness

measurement, further analysis in to the remaining two strain sensors is needed to understand

if this is a universal issue, or specific to the location the strain gauge is implemented onto

the battery. Figure 3.10 shows the voltage and strain gauge 2 measurements for the same

CCCV cycle discussed previously. First off, the strain sensor drop from 25-55 minutes is

not seen here, which shows firsthand that the sensor placement decision is critical to the

values of strain used to correlate to SOC. However, this sensor still shows significant noise

in comparison to the thickness sensor, which is okay in terms of this research investigation,

but further sensor optimization is necessary to become commercially viable.
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Figure 3.10: Single cycle comparison showing voltage profile alongside the normalized values for the strain gauge 2

Since previous results show that the strain sensors 1 and 2 show an increase in noise,

extending the analysis to the third strain gauge is necessary to understand the battery per-

formance. Recall, that this strain sensor is placed over the cell vent region, where a smaller

file:///Users/ryanhickey/Library/CloudStorage/GoogleDrive-ryan.p.hickey2@gmail.com/My%20Drive/resume/Website/Files/Figures/Chapter3/singleData_strainGauge2.fig
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metal can thickness is found (the smaller thickness is designed so that the vent will sys-

tematically fail when the cell internal pressure reaches a critical level). Figure 3.11 shows

the voltage and strain measurements for the same CCCV cycle discussed previously. Most

importantly, notice that the sensor noise now looks significantly reduced, which can be at-

tributed to the thinner metal can thickness allowing more deflection to be shown. Addition-

ally, it is important to note that for the wheatstone bridge circuit used to record the strain

readings, the operational amplifier circuit for strain gauge 3 is 10 times smaller than the

amplification needed for strain gauges 1 and 2. This is important, because this says that the

vent location shows more than 10 times the overall deflection, additionally resulting in less

signal noise due to robust measurements.
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Figure 3.11: Single cycle comparison showing voltage profile alongside the normalized values for the strain gauge 3

Since strain gauge 3 showed a robust signal measurement, further analysis into the SOC

correlation can be done, however, a discussion first about this specific strain gauge is nec-

essary. The results of this simple experiment show a future mechanical engineering design

application to study a special region built into the battery casing for strain gauge placement.

Since the strain gauge was placed on the vent, the surface is not already optimized to place a

strain gauge, so in order to optimize this technology, it is reasonable to state that designing a

special flat, smooth surface into the battery casing would be best in order to guarantee more

robust and most importantly, a reproducible measurement.

Further analsis beyond a single cycle correlation is needed for advancement of this tech-

nology’s potential. To do this, 40 cycles utilizing the CCCV cycling protocol is performed

file:///Users/ryanhickey/Library/CloudStorage/GoogleDrive-ryan.p.hickey2@gmail.com/My%20Drive/resume/Website/Files/Figures/Chapter3/singleData_strainGauge3.fig
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on the battery while monitoring both strain and thickness measurements. Since previous re-

sults show strain gauge 3 as the clean, noise reduced signal, the comparison between strain

gauge 3 and the thickness sensor will be performed in this step. Henceforth, strain gauge

3 is denoted in the following figures simply as the "Strain Gauge" data, since plots overlay

both the strain and thickness measurements. Figure 3.12 shows the 40 cycle CCCV test,

with Voltage corresponding to the primary y-axis, and both Thickness and Strain Gauge

(strain gauge 3) normalized measurements corresponding to the secondary y-axis. Note that

throughout the cycling, both strain and thickness curves seem to adequately trace the same

profile as the voltage measurement. However, it is important to note that for cycles 9 and

10 (corresponding to times 23-25 hours) show a signal increase for the strain measurement.

This is contributed to noise in the lab, which was investigated to validate, in order to ensure

this wasn’t a significant sensor relationship attribute to the battery expansion/contraction.

0 20 40 60 80 100 120
2.6

2.92

3.24

3.56

3.88

4.2

Test Time [Hours]

V
ol

ta
ge

[V
]

Voltage

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

Se
ns

or
V

al
ue

Voltage
Thickness Gauge
Strain Gauge

Figure 3.12: Multiple cycles look at voltage, strain, and thickness sensors relationship

Since the cycling results show a somewhat constant behavior as far as the curve profile

for both the strain and thickness measurements, further comparison and conclusions can be

made between the thickness and strain sensors. Figure 3.13 shows a single cycle CCCV

with the secondary y-axis corresponding to both the normalized values for thickness and

strain. Understanding how the profiles differ between the two is critical to making a control

decision for the EMS to integrate this technology as an SOC adjustment model.
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Figure 3.13: Single cycle look at voltage, strain, and thickness sensors relationship

Results from Figure 3.13 show that a somewhat similar profile between the thickness

and strain sensors is evident, however some points differ which needs to be fully understood

in order to allow EMS decisions to be made. However, the most important aspect of this

results to keep in mind is the initial goal to understand the viability of integrating a strain

gauge directly onto the specific battery. The results from the data shown allows reason-

able conclusion that the battery itself shows enough battery dimensional changes to allow

a strain gauge to be directly placed on the battery to correlate the strain change (battery

dimensional change) to the battery voltage, and ultimately to the battery SOC in real-time.

Now that the strain sensors, and thickness sensors, are believed to be adequate measure-

ment devices to correlate to SOC, a study needs to be performed to understand the model

differences between how the OCV polarization behaves throughout rest periods (following

a charge/discharge event) and how the strain/thickness measurements behave. Ideally, the

strain/thickness sensors show no polarization behavior alternatively to how the OCV be-

haves, which would show significant potential for this concept’s need to be implemented

for almost any battery related application where strict SOC monitoring is needed for safe

performance.
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3.3 Comparison of OCV & Dimensional Change Lookup

Methods for SOC

Previous sections performed experiments to understand how strain gauges, and thick-

ness gauges could be implemented on a battery to relate to voltage (and ultimately SOC). In

this section, further investigation was performed to understand how the battery dimensional

changes was effected following a discharge event. In applications, an SOC adjustment is

performed in periods of rest to update the values of SOC for batteries in the system. If

the battery dimensional changes does not polarize much like the voltage does, than a more

instantaneous SOC adjustment protocol can be performed.

In order to study this polarization behavior, an experiment needs to be performed to

analyze the various signals post discharge event during a long rest period. To do this, a 0.5 C-

Rate was applied to a battery until 0.5Ah were discharged. At this point, a 2 hour rest period

was performed while recording data across all systems. Figure 3.14 shows the results of

this study, where the voltage corresponds to the primary y-axis, and the strain and thickness

gauge (normalized values in order to plot together) are represented by the secondary y-axis.

Additionally, note that the strain gauge data plotted in this figure corresponds to the strain

gauge located on the vent area (denoted previously as "strain gauge 3").
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Figure 3.14: Discharge pulse (0.5 C-Rate) followed by 1 hour rest period to understand polarization of battery dimensional
change relative to voltage polarization.
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Analyzing this plot results in numerous conclusions and observations that need to be

made. First off, the thickness gauge seems to have a stepping function behavior as the

discharge event was performed. This can be explained by the Mitutoyo position gauge

accuracy, where the resolution in mm that the gauge reports is limited to 0.05mm. The

relative change of the battery dimension results in the position gauge recording this step

like behavior, however it is reasonable to conclude that if a position gauge was employed

with more accuracy, a smooth profile would be found. The next key observation is the

behavior of both dimensional change sensors following the discharge event. The voltage

immediately polarizes back to its steady state value, however, it takes at least 20-30 minutes

until the polarization is minimized to a value that an SOC adjustment could be performed.

Most importantly, the thickness and strain gauges do not seem to polarize much at all. It is

believed that the fluctuations in the strain gauge can be attributed to temperature effects on

the surface of the battery. Following the discharge event, the battery temperature has risen

slightly, and as the discharge event concludes, the battery temperature will reduce gradually

back to ambient. If employing temperature compensation as well as other strain gauge

optimization techniques, it is reasonable to believe that the profile found in the thickness

sensor could be obtained by the strain gauge sensors.

Results from Figure 3.14 provide significant evidence that the battery dimensional changes

could be used as an SOC adjustment protocol much like OCV. However, from the figure,

the thickness sensor showed no polarization following the discharge event beyond approxi-

mately 1 minute of rest. With this result, the battery dimensional change could provide much

more time efficient SOC lookup methods in to contrast remaining at rest for additional time

to utilize OCV.

3.4 Chapter Summary

This chapter introduced and analyzed the potential integration of strain gauges locally to

a battery in order to correlate to an SOC measurement. Introduced previously in Literature,

thickness measurements of batteries were performed, and found to track the voltage profile
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of a battery quite well. Additionally, some research has been conducted focusing on using

strain gauges instead of a thickness measurement, however, the strain gauges were never

used locally on a battery. The strain gauges were typically a lumped sum measurement

of 5-6 batteries. The focus of this study was to investigate that a strain gauge could be

placed locally on a battery, and have the resolution needed to still track the voltage profile

previously identified in literature.

This chapter showed experiments where multiple strain gauges were placed on a battery,

alongside the traditional thickness measurement system to track the battery dimensional

changes while testing the battery. First and foremost, the experiments showed that a strain

gauge could be placed locally on a battery and track the voltage profile, ultimately leading

to allowing the strain to SOC correlation we were looking for. Looking further, there are

many aspects to this technology that need further investigation and optimization to make

this a commercially viable option.

Perhaps the most important observation was the significance of the strain gauge loca-

tion selected, which showed the potential for a specially designed battery casing for the

optimized sensor design. The location where the vent was located showed significantly bet-

ter visibility of the strain measurement, which lead to the desire to design the battery case in

the future for a smooth, idealized case thickness to allow optimal strain readings.

Future work that needs to be performed is to continue investigations into the signal be-

havior when the battery goes to rest. This work was unable to be performed under the scope

of this research, but investing additional time and financial resources to reduce signal error

by multiple methods. The first is investing in industrial grade strain gauge measurement

data acquisition, but then additionally optimizing the strain gauge adhesion process along-

side adding temperature compensation to the strain system. By improving these qualities,

the confidence in the measurement results will increase, and lead to confident EMS decisions

based on the strain-SOC correlation that will be derived.
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Chapter 4

Dynamic Reconfiguration in Large

Battery Systems

4.1 State of Health Minded Dynamic Reconfiguration Model

The concept of DR at its fundamental level was introduced previously in Section 1.5.3.

In this chapter, DR will be employed in a simulation based environment to study potential

performance improvements in comparison to traditional static configuration based battery

systems. Before understanding these improvements, the basic simulation model must be

introduced to understand the systematic equations, as well as key nomenclature that will be

used throughout this chapter.

4.1.1 Battery Simulation Model Breakdown

Figure 4.1 shows the block diagram schematic that each individual cell in the battery

system employs [65]. Note that all variables listed in this schematic, as well as the equations

listed below are also defined in the list of symbols section (1). Additionally, the parameters

will be discussed in this section relative to each equation presented. The first set of equa-

tions to introduce are Equations 4.1 - 4.2 which correspond to the functions for Discharge

and Charge Models evaluated, respectively. To fully understand the variables listed in the

equations, exploration in [65] will provide detailed explanation for parameter extraction of

each specific variable.
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Figure 4.1: Control schematic employed for generic battery model in Simulink [65]

f 1(it, i⇤, i,T ,T a) = E0(T )�K(T )⇤ Q(T a)
Q(T a)� it

⇤ (i⇤+it)+A⇤exp(�B⇤ it)�C⇤ it (4.1)

f 2(it, i⇤, i,T ,T a) = E0(T )�K(T ) ⇤ Q(T a)
it + 0.1⇤Q(T a)

⇤ it

�K(T ) ⇤ Q(T a)
Q(T a)� it

⇤ it +A⇤ exp(�B⇤ it)�C ⇤ it
(4.2)

Since many parameters in the charge and discharge model equations are temperature

dependent, the derivation of these parameters must be defined in order to compensate for

temperature effects. Equations 4.3-4.9 were utilized to define the nonlinear battery voltage,

constant battery voltage, polarization constant, maximum battery capacity, and the battery

internal resistance, cell temperature, and cell power losses, respectively for the temperature

input into the model. The evaluation of these equations were critical in order to evaluate the

charge and discharge models previously defined.

V batt(T ) = f 1(it, i⇤, i,T ,T a)�R(T ) ⇤ i (4.3)
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E0(T ) = E0|Tref +
∂E
∂T

(T �T ref) (4.4)

K(T ) = K|Tref ⇤ exp
⇣

a
⇣ 1

T
� 1

T ref

⌘⌘
(4.5)

Q(T a) = Q|Ta +
DQ
DT

⇤ (T a �T ref) (4.6)

R(T ) = R|Tref ⇤ exp
⇣

b
⇣ 1

T
� 1

T ref

⌘⌘
(4.7)

T (t) = L-1
⇣PlossRth +T a

1+ s⇤ tc

⌘
(4.8)

Ploss = (E0(T )�V batt(T )) ⇤ i+
∂E
∂T

⇤ i⇤T (4.9)

All of the equations introduced previously were utilized in real time evaluation of the

current state of the batteries during any charge/discharge event. However, to truly understand

the lifetime performance improvements of the DR concept, there needs to be an aging model

to systematically degrade the battery performance based on the charge/discharge severity

employed in the system. In order to accomplish this, the introduction of equations centered

around the aging of the battery needs to be employed. Again, the variables nomenclature can

be found in the List of Symbols section at the beginning of this thesis (1). First, Equation

4.10 describes the battery aging factor for the individual battery, that is ran in parallel to

the previously listed equations. The aging model is evaluated at a given sampling rate, that

can be the same as other parameters, or altered to be evaluated incrementally to reduce

computation complexity. In order to evaluate Equation 4.10, additional equations need to be

evaluated, and introduced to do so. Equation 4.11, and Equation 4.12 were used to define

the maximum cycles until battery failure, as well as the SOC calculation of the battery.
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SOC = 100
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0
i(t)dt

⌘
(4.12)

4.1.2 Graph Theory Representation for Obtaining Configuration Op-

tions

The model that was employed consisted of a set number of batteries connected together

in predetermined configurations to support a load. In order to connect these batteries to-

gether, the graph theory representation discussed in Section 1.5.3 was be used to determine

any and all configurations that can be made based on the number of switches implemented in

the system. The number of SPC is a key metric to understanding the respective performance

improvement that the battery system will see in contrast to the static configuration. In these

models, every battery will have a minimum of two switches which were used to connect the

individual battery to the positive and negative terminals of the battery pack. The additional

switches added provide new configurations by adding series connections from one battery

to another. For a visual representation, Figure 4.2 shows a 6 cell system. The legend in

the picture depicts the color scheme used to show the system configuration options. Note

the light grey lines indicate that a switch is employed as a series line connection between

the two batteries. The maximum performance situation will occur when every battery has

a switch to connect in series with all of the batteries in the system. As the number of SPC
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is increased, intuitively one would think the performance benefit of DR will increase due to

the increased number of configuration options in the system.

Figure 4.2: Visual description of configuration options for a 6 cell system based on switch implementation

Figure 4.2 shows two potentially different configurations that could be employed in

the 6 cell system with the specific switches implemented in the system. If the number of

switches in the system were decreased, either of these two configurations could become in-

valid, which would result in lower performance improvement due to the non-ideal utilization

of a configuration at a given simulation time. For the research discussed in the remainder of

this section, it is important to understand how the number of SPC would impact the potential

performance improvement that would be seen utilizing DR. Subsequent sections will ana-

lyze simulation results for the 8 battery system, but before being able to simulate the battery

systems, the configuration options need to be identified for the DR controller to use through-

out the simulation. Table 4.1 shows the overall number of configurations available based on

two criteria’s. The first, is the overall number of SPC metric, which is intuitively directly tied

to the potential performance improvement. The second, is the number of parallel strings that

the system will operate in. The more cells in the system, relative to the number of parallel

strings will indicate the potential configurations available to the DR controller.

Understanding the significance of Table 4.1 is critical before examining the results of

the simulations. As the number of switches in the system increases, the total configurations

increases at a much larger rate proportional to the increase in number of switches. However,
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Table 4.1: Configuration options based on SPC metric for 8 and 16 cell systems

Switches Per Cell 2 Parallel Strings 4 Parallel Strings 8 Parallel Strings
8 Cell 16 Cell 8 Cell 16 Cell 8 Cell 16 Cell

3 1 1 1 1 - 1
4 4 8 5 30 - 34
5 21 918 16 1,137 - 491
6 32 3,545 35 10,191 - 3,116
7 35 5,370 63 69,350 - 12,483
8 35 6,132 90 329,424 - 36,500
9 35 6,373 105 877,691 - 86,311
10 35 6,428 105 1,515,132 - 180,560

understanding that as the number of configurations gets large, the overall performance im-

provement can saturate due to the extremely high number of configurations available. When

analyzing the simulation results, understanding the performance benefits for the SPC groups

were critical to understanding how to cost effectively retain a low cost product, while still

obtaining the maximum performance benefits available.

4.1.3 Simulation Model Design

The design of the simulation model was performed in Simulink, by utilizing the sim-

powersystems Toolbox. The model is visually simplified by utilizing the subsystem blocks,

and the overall breakdown of the model will be performed here. Figure 4.3 shows the model

in its simplest form, with a battery pack subsystem coupled with a controlled current source.

The controlled current source accepts a commanded current (i⇤), which can be either pos-

itive or negative to signify the battery pack either charging, or discharging, respectively.

The commanded current (i⇤) is supplied from the system controller, which also decides the

system configuration and sets the command for all switches in the model.

Figure 4.4 shows the subsystem for the battery pack that was utilized in Figure 4.3.

While this schematic can be quite complex, the ideology behind the connections is rather
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Figure 4.3: DR Simulation Model showing connection from battery pack to operating load/source.

straight forward. This model has 8 batteries in the system, with a balancing controller con-

nected to all terminals of the batteries. The overall system controller decides when to per-

form balancing, and if necessary, the balancing controller will begin operation. The balanc-

ing schematic will be discussed below. Each of the batteries in Figure 4.4 contain the same

subsystem, and each connection is set in a intuitive manner. Each battery has two switches to

connect to the battery pack positive and negative terminals. In addition, there is a switch that

is connected in series to connect each battery in the system to all other batteries. Based on

the simulation running, some switches may be valid to use, and some not. This is determined

by the criteria for the simulation that is being ran. Discussed previously, the number of SPC,

and ultimately the total number of configurations is resulting in the number of switches in

the system. For simulations where not all switches were used, the model simply doesn’t

ever utilize them. By doing this, the same model is able to be utilized for all switch option

situations, making autonomous simulation programming much less complex.

Figure 4.4 showed the battery pack system, which contained additional subsystems for

each battery. Figure 4.5 shows the subsystem for each battery, with the battery block con-

nected to numerous physical connections. Each connection out of the battery subsystem

is connecting to a different battery in the battery pack, with a power electronic switch to

connect between them. In addition to each of the series connections, the individual bat-

tery terminals have connections for positive and negative pack terminals, in addition to the



Chapter 4. Dynamic Reconfiguration in Large Battery Systems 100

Figure 4.4: DR Simulation Model showing the subsystem used for the battery pack. Red indicates a subsystem for a
cell/battery, blue for the balancing subsystem, and green for the pack positive/negative terminals

positive and negative balancing connections.

The balancing circuit that connects individually to each battery in the system is shown

in Figure 4.6. The simplest balancing system was employed in this simulation setup as a

passive resistive balancing topology. The commanded current i⇤ in the figure is the rate at

which the controller decides to discharge the individual battery to align the voltage to be

within the set tolerance specification.
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Figure 4.5: DR Simulation Model showing the subsystem used for the cell blocks. Yellow indicates the subsystem for a
power electronic switch in the system to connect to another cell/battery.

Figure 4.6: DR Simulation Model showing the subsystem used for the balancing circuit

The simulation model outlined above was created in a way to allow extensive cus-

tomization of the simulation parameters without altering physical design, structure or opera-

tion methodology. The various parameters and criterion able to alter programmatically were

discussed in the following section prior to analysis of the results.
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4.2 Performance Improvements of Dynamic Reconfigura-

tion compared to traditional

To understand any performance improvement for DR compared to traditional static con-

figurations, several criteria needs to be chosen as unique attributes to study. The selected

criteria were chosen as key attributes for a battery pack’s operation across a wide range of

applications. The focus of this research targets automotive applications, but also has con-

sidered grid applications in some niche conditions. Table 4.2 shows the different variables

that were being simulated for this experiment. The benefit of conducting this research in

a simulation environment is the extensive amount of variable conditions we were able to

explore without containing a large expense to purchase batteries, BMS systems, and testing

equipment to run the various conditions.

Table 4.2: Simulation variables for eight cell system

Parameter Specification Tested
Pack Configuration 4S2P, 2S4P
Switches per Cell 4, 5, 6, 7, 8, maximum condition

Balancing Voltage Specification 30mV, 40mV, 50mV
Capacity Condition Constant, 2% Variation

SOH Condition Constant, 2% Variation, 1(2, 3, 4, 5) Fresh amongst aged
C-Rate 5C, 2C, 1C

Simulation Type Static, Dynamic

Understanding the nomenclature in Table 4.2 is critical prior to analyzing the results

of the simulations. The "Pack Configuration" parameter signifies the series-parallel topol-

ogy that the system will operate in. For example, "4S2P" stands for 4 Series 2 Parallel,

which means that the system contains 2 parallel strings, each with 4 batteries in series. The

"Switches per Cell" (SPC) parameter means how many switches were in the system rel-

ative to each battery. Note, that each battery has two switches for the pack positive and

pack negative connections, and any additional switches signifies series connections between

batteries. Recalling Table 4.1, as the number of SPC increases, the configurations options

also increases significantly. The "Balancing Voltage Specification" signifies the tolerance of

voltage difference between the batteries at the end of the discharge event for every cycle.
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The smaller the tolerance, the more balancing will likely occur. The "Capacity Condition"

signifies the initial condition that the simulation begins with relative to the battery rated ca-

pacities in the system. The constant value signifies that all batteries have exactly the same

rated capacity, which is an ideal case and doesn’t happen practically. The 2% variation case

means that a 2% standard deviation across the batteries in the system for the initial condition

of rated capacity. The parameter "SOH Condition" is similar to the capacity condition for

both constant and 2% variation specifications, but has some extra conditions that would need

further explanation. The 1 Fresh amongst aged signifies the condition that there is 1 fresh

battery and the rest of the batteries in the system were aged to 85% SOH. This condition is

how the simulation starts, and acts as an initial condition for SOH. Then, instead of 1 fresh

battery, additional simulations were ran for having 2 fresh batteries (for an 8 battery sys-

tem, consequently then 6 batteries would be aged), and then having 3 fresh, and so on. The

parameter "C-Rate" is rather intuitive, and we were basically executing simulations where

the individual batteries will see a 5C, 2C, and 1C current throughout the simulation both on

charging and discharging. The last parameter is "Simulation Type", which basically means

Static or Dynamic. For Static, this is considered the traditional Metal Bus-Bar connections

to get the series-parallel topology that we want. While the Dynamic option is allowing the

use of power electronic switches to dynamically control the series-parallel topology, as well

as the individual battery location in each of the target configurations.

4.2.1 Ideal Case Comparison Static vs Dynamic Reconfiguration

Now that the unique simulations have been introduced along with the important nomen-

clature associated with it, the comparison for performance improvement of DR to static con-

figurations can be done. Before investigating performance impact based on the number of

SPC criteria, understanding how the DR concept performs in comparison to static in the

simplest form is critical. For this to be done, the static simulations were directly compared

to the DR - max condition. Recall, that the max condition utilizes the maximum number

of SPC, meaning that every battery can series connect to every battery in the system. This
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condition isn’t practical, since as battery system’s cell count increases, the needed power

electronic switches increases significantly (Recall Table 4.1). However, based on the theory

of this concept, this condition should show the most performance improvement which is an

essential first step in understanding DR enhancements.

Table 4.3 shows the simulation results for the 8 battery system when the initial condi-

tions for the 8 batteries were set to have constant capacity and SOH. This means that there is

no variation at the start of the simulation. Note, that this is an extremely ideal case, as many

battery manufacturers, like Johnson Controls, has to essentially "bin" sort their batteries at

the plant prior to integrating into battery packs. Even when mass producing, there is always

slight variation in terms of performance, actual battery capacity, and other aspects. The rea-

son for simulating this ideal case is to understand the outcome of the DR model in a fully

ideal situation.

Table 4.3: Simulation results for total energy delivered to the load in kWh under conditions:
4S2P configuration topology, constant SOH and Capacity for initial conditions, 30mV bal-

ancing tolerance, and DR max configuration options.

Model 5C-Rate 2C-Rate 1C-Rate
Static 84.834 131.368 190.975

Dynamic 83.863 129.591 186.915

Thoroughly understanding the results in Table 4.3 is an important first step to truly

understanding where DR can benefit battery systems. Initially examining the table of results,

in all C-Rates that were tested, the static model delivered more energy to the load than the

DR - max conditions case. At first, this may be troublesome, as DR would be expected to

perform superior than static configuration in all cases. However, understanding what the

DR model changes to achieve this reconfiguration capability is critical. By employing all of

these power electronic switches in the system, a new loss mechanism is added to the system.

By adding large amounts of switches, the amount of losses increases as well, meaning that

in order to have the end performance between static and DR to be the same, the DR has to

perform better to counteract the additional losses in the system. Additionally, the way that

DR extends performance is by changing the configuration to a better configuration option

at any given time. In this simulation case, all of the cells start with the same aging and
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capacity, so in order for a new configuration to be selected by the controller, the cells need

to age nonlinearly to a point where the same configuration is no longer best. By examining

the results in Table 4.3, it is clear that the cells had minimal variation, resulting in no need

for a new configuration in order to drastically change the performance enough to counteract

the additional switches in the system.
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Figure 4.7: Simulation results for (a) total energy of the cells in kWh across the 8 cell system and (b) balancing energy in Wh
under conditions: 4S2P configuration topology, constant SOH and Capacity for initial conditions, 30mV balancing tolerance,

and DR max configuration options

After understanding the results based on the total energy delivered to the load, examin-

ing the energy throughput for each individual battery is necessary to understand any addi-

tional performance alterations based on DR. Figure 4.7 shows the total energy for each cell

in the system that was simulated for 5C, 2C, and 1C rates denoted in (a). Note that each

cell number has 6 bar plots, with two corresponding to each C-Rate tested. The order of

these bars based on C-Rate is signified for battery 1, and applies for all. This structure will

be utilized for multiple plots in this section. For each C-Rate, the static and DR simulation

result is shown. For this extremely ideal case, the variation in performance from cell to cell

during the same simulation does not vary significantly, which makes sense due to the DR

performance effect occurring most when cell variation is evident. Figure 4.7 denoted in part

(b) shows the balancing losses for each cell during the same simulation conditions.
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Further examination of Figure 4.7 (b) shows some interesting results. Under the higher

rate conditions (5C-Rate, 2C-Rate), the DR simulation shows more balancing losses than

the static model. This means that by switching the configuration significantly when the cell

variation isn’t significant, that the DR model is being over-utilized, and not achieving the

performance benefit desired. Since this was a very ideal situation that isn’t practical, the

exploration of a more "real-world" case is important to understand if there is any potential

benefit when using DR topologies.
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Figure 4.8: Comparison of static vs dynamic models under the maximum SPC condition across multiple C-Rates for the
ideal condition (initial conditions of constant SOH and capacity). Each C-Rate is labeled in the figure, where both static, and

dynamic simulations results were plotted. The data shows the total energy delivered to the load for each cycle.

While examining the final values of the simulations provides adequate insight into the

integration of the dynamic reconfiguration topology, understanding the behavior throughout

simulations was performed. Figure 4.8 shows the total energy delivered to the load during

each cycle for each of the three C-Rates tested (5C, 2C, 1C). Note that the 5C-Rate results

seem to be virtually the same for both static and dynamic conditions. However, the dynamic

model starts to deliver more energy per cycle as the total cycles increases for the lower C-

Rate conditions shown in the figure. Although, recall that the dynamic model under these

ideal conditions do not provide the performance enhancement expected in comparison to

the static model. Beyond just the final deliverable energy, examining the average energy

throughput across the 8 cells in the system was performed.



Chapter 4. Dynamic Reconfiguration in Large Battery Systems 107

0 500 1,000 1,500 2,000 2,500 3,000
0

5

10

15

20

25

5C

2C

1C

Time [Hours]

E
ne

rg
y

[k
W

h]

Static
Dynamic

Figure 4.9: Comparison of static vs dynamic models under the maximum SPC condition across multiple C-Rates for the
ideal condition (initial conditions of constant SOH and capacity). Each C-Rate is labeled in the figure, where both static, and
dynamic simulations results were plotted. The data shows the average energy throughput (with error bars to signify standard

deviations) across the 8 cells in the system.

Figure 4.9 shows the average energy throughput across the 8 cells in the system (with

error bars indicating the standard deviation), for the numerous C-Rates across static and dy-

namic simulations. Note that the static and dynamic models seem to have identical behavior

throughout the simulations, but closer analysis shows that the standard deviation for the dy-

namic model is lower than the static model as the simulation evaluates. An important note

for this plot is that the x-axis is in time, and the y-axis is a running total of energy throughput,

unlike Figure 4.8 where the data showed the energy per cycle. Since the results in Figure

4.9 were hard to differentiate a relationship between static and dynamic, the separation of

cell energy throughput per cycle was performed.

Figure 4.10 shows the average cell energy throughput per cycle (with error bars indi-

cating standard deviation), for both static and dynamic conditions. Note that for each of the

C-Rates, the static model shows a rather smooth, linear performance throughout the system’s

cycle life. However, the dynamic model shows a significant point about halfway through the

simulation, where the average value of energy per cycle increases, which was resultant of

the controller finally finding a better configuration, and began reconfiguring to deliver more

energy. Essentially, the variance in the system was so low, that the controller could not find a

better configuration to adjust to, until the variance in the system increases over time to where
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Figure 4.10: Comparison of static vs dynamic models under the maximum SPC condition across multiple C-Rates for the
ideal condition (initial conditions of constant SOH and capacity). Each C-Rate is labeled in the figure, where both static,
and dynamic simulations results were plotted. The data shows the average energy (per cycle) throughput (with error bars to

signify standard deviations) across the 8 cells in the system.

the controller found the opportunity to adjust the configuration for better performance. Note

the cycle for which this increase in energy throughput begins for both the 2C and 1C rates

on Figure 4.10 was close to the same area in Figure 4.8 began to deliver more energy (per

cycle) to the load in comparison to the static condition.

4.2.2 Practical Case Comparison Static vs Dynamic Reconfiguration

Table 4.4 shows the more practical simulation results for the total energy delivered to

the load when inducing a 2% variation in both SOH and capacity across the 8 cells in the

system. Recall, that previously the DR simulations delivered less energy to the load in all

C-Rate conditions, but when inducing the more practical initial aging and capacity, the DR

delivers more energy to the load. Now that the system has more cell variability, the DR con-

troller is able too find more optimized configurations and is able to execute the DR topology

to begin improving performance at the start of operation. The DR case showed a 3.07%

improvement for the 5C-Rate condition, 3.39% improvement for the 2C-Rate condition, and

1.23% improvement for the 1C-Rate condition. Beyond this indication, it is important to

note that in the previous few figures, the dynamic model shows an overall reduction in stan-

dard deviation relative to the static model under the same test conditions. This reduction
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in standard deviation is identified as a potential advantage for the dynamic reconfiguration

topology, since the lower standard deviation indicates an overall better utilization of the

batteries potential.

Table 4.4: Simulation results for total energy delivered to the load in kWh under conditions:
4S2P configuration topology, 2% variable SOH and Capacity for initial conditions, 30mV

balancing tolerance, and DR max configuration options.

Model 5C-Rate 2C-Rate 1C-Rate
Static 76.270 122.403 182.665

Dynamic 78.614 126.549 184.908

Since the DR simulations outperformed the static model with the 2% variation in initial

SOH and capacity, further examination of this test condition is necessary to understand any

further performance improvements. The 2% variation was decided based on recommenda-

tion from Johnson Controls as a typical deviation found in battery systems which was the

foundation of reasoning for selecting this condition as the practical case. Figure 4.11 shows

the same plot design discussed previously, but now the data corresponds to the 2% variation

in initial SOH and capacity case. Recall, that previously (for the constant SOH and capacity

initial condition) that the static condition had more energy throughput for each cell, as well

as very minimal variation from cell to cell in comparison to the DR case. Examining the

figure, the static case shows much more variability from cell to cell performance, especially

compared to the DR case.

Table 4.5 shows a statistical analysis for Figure 4.11 (a) in order to quantify the per cell

variation in performance across both the static and DR case. This table has two important

aspects to take under consideration: First, that the mean value of energy throughput for

the cells in the system is superior for the DR case than the static case across all C-Rates.

Additionally, the standard deviation across the 8 cells in the system was significantly lower

for the DR case than that of the static case. Having more consistent per cell performance is

significantly more desirable for a battery management perspective, which could ultimately

lead to more predictable and manageable lifetime system performance.

Since the DR case proved to reduce cell variability in the system for total energy

throughput, examining the overall cell balancing is important to understand the losses in
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Figure 4.11: Simulation results for (a) total energy of the cells in kWh across the 8 cell system and (b) balancing energy in
Wh under conditions: 4S2P configuration topology, 2% variable SOH and Capacity for initial conditions, 30mV balancing

tolerance, and DR max configuration options

Table 4.5: Simulation results for total energy of the cells in kWh, with statistics performed
(mean and standard deviation) across the 8 cell system under conditions: 4S2P configuration
topology, 2% variable SOH and Capacity for initial conditions, 30mV balancing tolerance,

and DR max configuration options.

Model 5 C-Rate 2 C-Rate 1 C-Rate
Mean St. Dev. Mean St. Dev. Mean St. Dev.

Static 9.53 0.4093 15.30 0.6283 22.83 0.7986
Dynamic 9.83 0.0604 15.82 0.1012 23.11 0.3893

the system. Figure 4.11 (b) shows the balancing energy losses for each of the cells across

multiple C-Rates for both the static and DR case. Note that in all cases, the DR simulations

result in more cell balancing than the static case. This shouldn’t be perceived as a problem,

since the changing configurations results in less variation in cell use compared to static. The

less variation results in more universal cell balancing throughout the pack.

Increased balancing losses for the DR case can be acceptable based on the performance

improvement for the delivered energy to the load. However, understanding potential reasons

for the increased deliverable and balancing energy is important for moving forward with this

technology. Table 4.6 shows the final value of SOH both in mean and standard deviation

values for the simulations ran. For the DR case, the average final value of SOH is lower

than the static case across all C-Rate conditions. The failure limit to end the simulations
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is when a cell reaches 80% SOH, which is standard failure criteria in applications. By DR

allowing the average value of SOH to be lower, the overall energy being delivered is being

pushed further than the static case. Not just lower SOH values, but the DR cases show lower

standard deviation across the cells in the system, which indicates overall better utilization of

the energy capabilities. Additionally, since the cells were being further utilized, the overall

balancing needed is increased, which justifies the increased values in cell balancing for the

DR case.

Table 4.6: Simulation results for final SOH of the cells, with statistics performed (mean and
standard deviation) across the 8 cell system under conditions: 4S2P configuration topology,
2% variable SOH and Capacity for initial conditions, 30mV balancing tolerance, and DR

max configuration options.

Model 5 C-Rate 2 C-Rate 1 C-Rate
Mean St. Dev. Mean St. Dev. Mean St. Dev.

Static 81.99% 1.9126 81.93% 1.7379 82.81% 2.2297
Dynamic 81.31% 1.2341 80.95% 1.1144 81.21% 0.9480

Examining the final simulation results provide interesting results for the dynamic model

under this practical condition, and further examining into the performance differences through-

out the simulations was done similar to the analysis previously discussed for the ideal case.

Figure 4.12 shows the same figure that was used in the ideal case, but now shows the results

for the practical case conditions (2% variation in initial SOH and Capacity across the 8 cells

in the system). Note that for all C-Rates tested, the dynamic model delivers more energy per

cycle than the static case, where in the ideal case conditions discussed previously, the 5C

did not. Additionally, as the cycles increase, the overall separation in performance between

the static and dynamic deliverable energy per cycle increased for each respective C-Rate.

Since the more practical case has shown to have enough variability in the system to

prove the benefit of DR, examining the performance for the battery utilization in the system

was performed. Figure 4.13 corresponds to the total energy throughput (averaged across the

8 cells in the system, with error bars indicating standard deviation), for each of the three

C-Rates tested. Note that for the practical case, the performance difference between static

and dynamic has enough separation to distinguish a performance difference, where the same

figure under the ideal case previously discussed did not. Additionally, note that the standard
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Figure 4.12: Comparison of static vs dynamic models under the maximum SPC condition across multiple C-Rates for the
practical condition (initial conditions of 2% variable SOH and capacity). Each C-Rate is labeled in the figure, where both

static, and dynamic simulations results were plotted. The data shows the total energy delivered to the load for each cycle.

deviation for the dynamic case was noticeably smaller compared to the static case. Having

smaller standard deviation for the cell energy throughput indicates that overall, the battery

system is better utilizing its components, rather than wasting potential energy due to cell

variance in the system.
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Figure 4.13: Comparison of static vs dynamic models under the maximum SPC condition across multiple C-Rates for the
practical condition (initial conditions of 2% variable SOH and capacity). Each C-Rate is labeled in the figure, where both
static, and dynamic simulations results were plotted. The data shows the average energy throughput (with error bars to signify

standard deviations) across the 8 cells in the system.

The more practical case has shown to have enough variability in the system to begin to

reconfigure in order to boost performance, so the analysis was performed again to show the
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average cell energy throughput per cycle, in order to see where the dynamic model begins

to boost performance with new configuration opportunities. Figure 4.14 corresponds to the

simulation results for the average cell energy throughput per cycle (with error bars indicating

standard deviation across the 8 cells in the system) for each of the C-Rates tested. Note that

the average value of energy per cycle seemed to begin oscillating about midway through the

simulations for each of the C-Rates, which indicates that the dynamic models began to find

better configurations to reconfigure. Also, it is important to note that the standard deviation

is significantly reduced for the dynamic model in comparison to the static model for each of

the C-Rates, which is indicated by the error bars in the figure.
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Figure 4.14: Comparison of static vs dynamic models under the maximum SPC condition across multiple C-Rates for the
practical condition (initial conditions of 2% variable SOH and capacity). Each C-Rate is labeled in the figure, where both
static, and dynamic simulations results were plotted. The data shows the average energy (per cycle) throughput (with error

bars to signify standard deviations) across the 8 cells in the system.

Since the performance in this practical case showed that DR started to find better con-

figurations to adjust to about midway through the simulations, understanding the specific

configuration selection was performed. Figure 4.15 shows the comparison for both the ideal

and practical simulation case to understand how the induced variance in the system (e.g., the

practical case) resulted in different configuration selection by the controller. Ultimately, this

difference in configuration selection was what results in the change from DR not delivering

as much energy to the load as the static (for the ideal condition), to the DR delivering more

energy to the load for the DR case (for the practical condition).
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Figure 4.15: Comparison of the configuration choice throughout the simulation for the 5C-Rate condition where (a) corre-
sponds to the ideal case (constant SOH and Capacity as initial conditions), and (b) corresponding to the practical case (2%

variation in SOH and Capacity as initial conditions)

Examining the configuration selection in Figure 4.15 results in two main conclusions.

First, note the time where the first reconfiguration occurs. For the ideal case, this occurs

around a time of 180 hours (simulation time). However, for the practical case, the first

reconfiguration occurs around a time of 140 hours. This extra 40 hours of reconfiguring es-

sentially resulted in the change from DR delivering less energy in the ideal condition, to DR

delivering more energy in the practical condition. Secondly, note the text box placed in both

of the subplots indicating the total number of switch events. For the ideal case, 2,497 recon-

figurations occurred, while for the practical case, 3,345 reconfiguration events occurred. By

having more reconfiguration events, this means that the controller found significantly more

opportunities to deliver more energy just between this ideal and practical case. However,

note that in comparison to the static condition, by having more than 2-3 thousand opportu-

nities where the initial configuration was not the optimum, this acts as an essential proof of

concept that DR has performance enhancement opportunities.

After analyzing both the ideal case, and the practical case the DR topology has proven to

provide some performance improvement, while the true improvement is found when larger

variability amongst the cells in the system can be found. Since variability seems to play the

larger role, investigating specific applications that invoke larger variabilities is a necessary

next step.
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4.2.3 Distributed Energy Storage - Dynamic Reconfiguration Oppor-

tunities

Johnson Controls (our research sponsor) discussed the standard protocol when a cell

fails in a module for the grid related DES systems. According to them, replacing a single

cell in a module is too expensive in terms of training technicians to replace a single cell.

So, they replace the entire module in the system with a new (fresh) module of batteries.

When placing a fresh module alongside already aged modules, the full utilization of the

fresh module will not occur. DR gives promise to better utilizing the fresh modules by

reconfiguring the modules to better work together. For this case, simulations were performed

by treating the individual cells as the modules, and by placing fresh cells amongst already

aged cells in order to understand if DR can provide any performance improvement compared

to the static version.

The case to study this DES application is the simplest condition in which 1 module starts

the simulation with the fresh 100% SOH condition, while the rest were "aged", and in this

case the aged modules were set to 85% SOH. Recall, that the simulation completes when

any cell in the system reaches 80% SOH. Table 4.7 shows the simulation results for this

condition for both static and DR cases under various C-Rates. In all C-Rate conditions, the

DR cases deliver more energy to the load. The DR case showed a 5.48% improvement for the

5C-Rate condition, 7.52% improvement for the 2C-Rate condition, and 6.31% improvement

for the 1C-Rate condition.

Table 4.7: Simulation results for total energy delivered to the load in kWh under conditions:
4S2P configuration topology, 1 fresh cell with rest aged, 2% variable capacity for initial

conditions, 30mV balancing tolerance, and DR max configuration options.

Model 5C-Rate 2C-Rate 1C-Rate
Static 17.709 27.695 40.283

Dynamic 18.680 29.776 42.824

Further examination for the 1 fresh cell placed amongst aged cells in the system requires

the understanding of cell to cell performance variation for both static and DR cases. How-

ever, at this point, the goal is to understand if DR provides any performance enhancement
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under maximum SPC conditions in contrast with the static model. Table 4.7 certainly shows

that more energy is delivered to the load across all C-Rates, and needs to be explored further.

However, understanding if there is any performance enhancement for SPC conditions less

than the maximum situation needs to be evaluated.

4.3 Investigation of Configuration Flexibility Correlation

to Performance Benefits

In previous sections, the performance improvement for DR compared to static was in-

vestigated via simulation. Since the max condition was explored (maximum number of

SPC), and found to result in a significant performance improvement, further engineering

exploration is necessary to understand the performance impact of DR on a SPC basis.

First priority of this investigation is to understand if DR performance improvements

were only evident in the maximum SPC configuration. This investigation runs separate

simulations for multiple SPC criteria, ranging from 4 through 8. Additional results for static

and the maximum DR case were shown to understand results of this study. Recall, that all

switches have 2 dedicated to the pack parallel connections, and the remaining switches were

used for series connections with other batteries.

4.3.1 Switches Per Cell Performance Comparison - Practical Case

Table 4.8 shows the simulation results for total energy delivered to the load where the

DR cases were shown for each SPC metric, under multiple C-Rate conditions. First note

that in nearly all cases, the DR outperforms the static metric. However at the lower SPC

values, the static performance supersedes the DR. This is important to note, as this indicates

that DR might not always outperform the static case, but by implementing more switches

into the system, the performance enhancement for DR compared to static can be achieved.

Understanding the performance impact based on the SPC metric is critical to optimizing the

system not only for performance, but also the initial capitol cost for the battery pack.
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Table 4.8: Simulation results for total energy delivered to the load in kWh under conditions:
4S2P configuration topology, 2% variable SOH and capacity for initial conditions, 30mV

balancing tolerance, and various DR configuration options.

Model Switches Per Cell 5C-Rate 2C-Rate 1C-Rate
Static - 76.27 122.40 182.66

Dynamic

4 78.53 122.00 175.55
5 78.55 127.01 188.86
6 78.53 126.61 185.09
7 78.61 126.55 184.91
8 78.61 126.55 184.91

Max 78.61 126.55 184.91

The test condition shown in Table 4.8 were based on the condition where a 2% variable

SOH and capacity is set for initial conditions. Recall, that in the previous section for this

simulation criteria, the performance improvement for DR was not as significant as expected.

This seemed to make sense, due to the DR premise of variability in the system resulting in

the need for reconfiguration. However, understanding the performance improvement on a

per switch basis is important even for this less desired situation.

Figure 4.16 below shows the simulation results for each battery across the numerous

simulations run to compare the SPC correlation to performance improvement of DR. First,

understanding that DR showed significantly less variability on a cell to cell basis in energy

throughput for each of the cells no matter which SPC value was simulated. Additionally,

note the very large variation in performance for the static model when examining the energy

throughput for cells 1-4 compared to cells 5-8. This can be simply explained for the static

model, since the configuration is 4S2P, with cells 1-4 in the first parallel string, and cells

5-8 in the second parallel string. Since these cells are in the same parallel string, cells 1-4

result in similar performance, while cells 5-8 show different throughput (while cells 5-8 have

similar performance relative to eachother). By taking this into account, this large separation

in throughput between the parallel strings should be alarming, since the system will reach

its failure criteria (80% SOH) at an earlier time. When that failure is reached, cells 1-4 are

heavily underutilized, which is why examining the various SPC DR cases, it should be quite

clear that the overall battery utilization is far superior, as the overall cell throughput across

the cells in the system is significantly better aligned.
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Figure 4.16: Simulation results for total energy of the cells in kWh across the 8 cell system under conditions: 5C-Rate, 4S2P
configuration topology, 2% variable SOH and Capacity for initial conditions, 30mV balancing tolerance, and various DR

configuration options (SPC variation)

Understanding that there is significant variation in performance for the static case, but

not so much for the DR case, a statistical analysis should be done to compare the various SPC

metrics. Table 4.9 shows the mean and standard deviation values for all of the simulations

done with the main metric of 2% variation in SOH and capacity for initial conditions. Most

importantly, note that the average value of energy throughput for the cells is nearly higher

for all DR cases compared to static (only 1 simulation was slightly lower performance than

static). Additionally, note that the performance enhancement for DR based on specific SPC

values seems to saturate the improvement prior to reaching the maximum SPC case. While

the performance is still superior to the static case, understanding what values of SPC the

improvement saturates is critical to engineering optimization to reduce overall cost in the

system (in this case by reducing the number of switches needed).

Not just the average value of cell energy throughput was improved for all DR cases,

but the standard deviation is significantly improved compared to the static case. Interesting

enough, the standard deviation shows less fluctuation as the SPC value changes, in compar-

ison to the fluctuation in the mean values. However, it is important to note that no matter

what SPC value was used, the DR simulations were significantly less variable than the static

model. Reducing the cell to cell performance variation can lead to overall better utilization
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Table 4.9: Simulation results for total energy of the cells in kWh, with statistics performed
(mean and standard deviation) across the 8 cell system under conditions: 4S2P configuration
topology, 2% variable SOH and capacity for initial conditions, 30mV balancing tolerance,

and various DR configuration options.

Model Switches Per Cell 5C-Rate 2C-Rate 1C-Rate
Mean St. Dev. Mean St. Dev. Mean St. Dev.

Static - 9.533 0.4093 15.300 0.6283 22.832 0.7986

Dynamic

4 9.815 0.0393 15.249 0.4043 21.942 1.0318
5 9.817 0.0583 15.876 0.1255 23.606 0.4107
6 9.814 0.0601 15.824 0.1046 23.134 0.4088
7 9.825 0.0604 15.817 0.1012 23.112 0.3893
8 9.825 0.0604 15.817 0.1012 23.112 0.3893

Max 9.825 0.0604 15.817 0.1012 23.112 0.3893

of the batteries, but also improved model accuracy for predicting lifetime and failure criteria

across applications.

Table 4.10: Simulation results for final SOH of the cells, with statistics performed (mean
and standard deviation) across the 8 cell system under conditions: 4S2P configuration topol-
ogy, 2% variable SOH and capacity for initial conditions, 30mV balancing tolerance, and

various DR configuration options.

Model Switches Per Cell 5C-Rate 2C-Rate 1C-Rate
Mean St. Dev. Mean St. Dev. Mean St. Dev.

Static - 81.99% 1.9126 81.93% 1.7379 82.81% 2.2297

Dynamic

4 81.04% 0.9700 81.84% 1.5574 83.19% 2.4048
5 81.33% 1.2418 80.92% 1.0885 80.67% 0.5870
6 81.33% 1.2412 80.95% 1.1051 81.20% 0.9541
7 81.31% 1.2341 80.95% 1.1144 81.21% 0.9480
8 81.31% 1.2341 80.95% 1.1144 81.21% 0.9480

Max 81.31% 1.2341 80.95% 1.1144 81.21% 0.9480

Since the total energy delivered to the load, and the per cell energy throughput was

shown to improve as the number of switches increases, understanding the performance im-

provement for cell utilization is important. Table 4.10 shows the final cell SOH mean and

standard deviation values for this simulation. Note that in almost all cases, the average and

standard deviation value is improved for DR compared to static. However, the number of

switches implemented into a system will ultimately drive the cost of the system up, which

means understanding the significance on a per cell basis. Examining the results shown, the

performance improvement for conditions 6-8 (SPC) show nearly identical performance. Ul-

timately, this means that spending the extra capitol on these switches is unnecessary, and the
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same end user performance can be achieved using less materials.

4.3.2 Dynamic Reconfiguration Performance Improvement Parameter

Effects

Previous sections have shown that DR can show significant performance improvement

in contrast with the static case not just for the maximum SPC condition, but across numer-

ous SPC values. Further analysis of the SPC effect on overall DR performance improvement

is necessary, but perhaps most important is understanding the effect of specific parameters

within applications. Prior sections showed that as the variability of cells is increased, the

DR performance thrives, so understanding the effect of the SOH variance in the system is

needed (moving from 1 fresh cell to 2 fresh cells, etc.). Additionally, understanding the

performance improvement based on the battery pack configuration is critical to understand-

ing the DR topology. For the 8 cell system, this can be done by analyzing the performance

difference between the 4S2P and 2S4P configurations. Finally, different applications will

have their own balancing specification that will be used throughout cycling. By examining

literature, values for balancing specifications ranging from 30mV to 50mV was performed

to understand how DR performance is effected by the balancing specification used.

Previous sections showed that DR resulted in performance improvement across the vast

majority of the SPC conditions in contrast to the static model, and due to this the results

to follow will be compared based on percent improvement for each SPC relative to the

static model in order to reduce clutter in figures. Additionally, the deliverable energy to

the load could vary based on configuration (significant difference in pack voltage), so by

calculating the percent improvement for configuration relative to the static model (at the

same configuration) is a way to directly compare the DR performance improvement across

different configurations.
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Dynamic Reconfiguration Performance Improvement - Effect of SOH Variability

Previous sections showed that DR showed much more performance improvement when

more variance is introduced to the system. Specifically, implanting a fresh cell (or multiple

fresh cells) amongst already aged cells proved the demand for DR to improve system perfor-

mance. Figure 4.17 shows the direct comparison for percent performance improvement of

DR (relative to the static performance at that same condition) for deliverable energy to the

load across multiple C-Rates and SPC values. Notice, that in all cases, the DR simulations

outperforms the static model but most importantly as the number of switches increases, the

performance does as well. However, as the number of SPC increases, the performance im-

provement saturates, which proves that there is a fundamental limit where the integration of

additional switches is deemed unnecessary from both a technological, and most importantly

a financial standpoint.
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Figure 4.17: Simulation results for total energy delivered to the load in kWh across the 8 cell system under conditions: 2S4P
configuration topology, 2% variable Capacity for initial conditions, 30mV balancing tolerance, and various DR configuration

options (SPC variation)

While Figure 4.17 certainly contains a lot of information to understand, several conclu-

sions can be made based on these results. First, in all cases (both C-Rate and SPC) the DR

topology improves performance in comparison with the static configuration. Additionally,

in some cases, the performance increased by 15%, which is a quite significant improvement.

Lastly, the relationship for performance improvement for each case (C-Rate and SPC) does
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not show consistent performance improvement when moving from 1-3 fresh cells placed in

the system. This is a significant property to note, as in DES applications where fresh mod-

ules are continuously placed amongst aged, the performance improvement that is seen with

DR cannot be linearly increasing with every new fresh module. However, understanding

performance improvements through experimental and simulation research, this performance

improvement could be understood on a per application basis for commercial suppliers like

Johnson Controls.
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Figure 4.18: Simulation results of mean cell energy throughput in kWh across the 8 cell system under conditions: 2S4P
configuration topology, 2% variable Capacity for initial conditions, 30mV balancing tolerance, and various DR configuration

options (SPC variation)

Since the deliverable energy showed such promising results (cases with 15% improve-

ment) for DES application conditions with fresh cells integrated with aged cells, further

analysis to understand DR improvements was performed. Figure 4.18 shows the analysis

for the mean value of cell energy throughput for each of the cases (C-Rate and SPC) rep-

resented by the mean value across the 8 cells, and additionally as the percent improvement

seen by DR relative to the static model. With performance improvements ranging from 8-

18% across all of these cases, it should be noted that by improving the mean value of cell

energy across the system essentially translates to better utilization of system components.

The average cell energy being increased signifies that by utilizing DR topologies (across

different SPC values), the energy delivered to the load is being better distributed across the

cells in the system, rather than the bulk of the load being applied to specific string of cells.
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Table 4.11: Standard deviation values across multiple C-Rates and SPC for the cell energy throughput comparison
across 1-3 fresh cells in the 8 cell system.

Model SPC 5C-Rate 2C-Rate 1C-Rate
1 Fresh 2 Fresh 3 Fresh 1 Fresh 2 Fresh 3 Fresh 1 Fresh 2 Fresh 3 Fresh

Static - 0.1341 0.1368 0.1344 0.2009 0.2047 0.2019 0.2529 0.2645 0.2554

Dynamic

4 0.0679 0.1831 0.1885 0.1003 0.2917 0.2990 0.1332 0.4096 0.4301
5 0.0821 0.1729 0.1267 0.1197 0.2797 0.1554 0.1632 0.3958 0.2248
6 0.0822 0.1642 0.1576 0.1194 0.1202 0.2086 0.1632 0.3298 0.1847
7 0.0541 0.1642 0.1451 0.0846 0.1224 0.2230 0.1208 0.3626 0.1748
8 0.0543 0.1642 0.1394 0.0847 0.1227 0.2217 0.1199 0.3683 0.1892

max 0.0543 0.1642 0.1394 0.0847 0.1227 0.2217 0.1198 0.3683 0.1892

After analyzing the average cell energy throughput figure, the effect of fresh cells being

placed amongst aged cells showed significant improvement, however no clear relationship

was found when moving from 1-3 fresh cells. Further analysis was conducted to understand

if any potential relationship can be found by comparing the standard deviation across the 8

cells in the system for each of the initial SOH conditions previously discussed. Table 4.11

shows the standard deviation values for each of the 1-3 fresh cell conditions simulated.

While examining the final results across all of these simulations has provided a strong

case for DR topologies in the DES cases (where significant cell to cell variability can be

found), further understanding and analysis was performed to understand how the perfor-

mance varies throughout the simulation. Figure 4.19 shows the energy delivered to the load

per cycle, for the 1C-Rate condition with each SPC value for the dynamic simulations in

addition to the static case. Note that this figure contains 3 plots, where (a) is the DES condi-

tion of 1 fresh cell, (b) 2 fresh cells, and (c) with 3 fresh cells, and the remaining cells in the

system are set to aged (85% SOH) as the initial condition. Note that in all 3 of the DES con-

ditions shown in the plot, the DR topologies (SPC from 4-max) show more energy delivered

to the load per cycle in comparison to the static model. Interesting enough, when exam-

ining the DR cases of varying the SPC, the energy per cycle delivered to the load doesn’t

change significantly when integrating additional switches into the system (e.g., increasing

the SPC). This is important to understand, as by increasing the SPC value, the cost of the

system will increase, so the additional capitol investment in both switches, but increased

controller complexity needs to be returned with a boost in performance enhancement.
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Figure 4.19: Comparison of static vs dynamic models under the multiple SPC conditions (labeled in the legend) for 1C-Rate
current. The initial SOH conditions for (a) is 1 fresh cell, (b) 2 fresh cells, and (c) 3 fresh cells, where the remaining cells in

the system (total of 8 cells) are initially at 85% SOH. The data shows the total energy delivered to the load for each cycle.

Since the delivered energy to the load per cycle showed interesting results for the three

DES cases, further understanding to the performance variation across the 8 cells in the sys-

tem throughout these simulations was performed. Figure 4.20 corresponds to the standard

deviation (or variance) across the 8 cells in the system for (a) 1 fresh cell, (b) 2 fresh cells,

and (c) 3 fresh cells cases. Note that in the delivered energy per cycle figure previously

discussed, the differentiation between each of the values of SPC showed unclear indication

as to the performance difference when changing levels of SPC. However, the cell to cell

variation in energy per cycle now shows clear evidence to the performance difference for

the cells as a function of the SPC. In the case of this figure, the DR simulations goal is to

have the lowest variation across the cells in the system, ultimately indicating overall better

battery utilization, in comparison to the static model. Note, that for some values of SPC,

the variance in the system increases above the level of the static condition, which proves the

need t examine the results throughout the simulation, rather than solely the final value.

As the number of fresh cells (or modules) increases in the system, this research showed

that not only does the DR topologies provide significant performance improvement, but the

specific SPC value can significantly impact the deliverable energy, as well as the overall

battery utilization in the system. Within this condition, the variability in the system can
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Figure 4.20: Comparison of static vs dynamic models under the multiple SPC conditions (labeled in the legend) for 1C-Rate
current. The initial SOH conditions for (a) is 1 fresh cell, (b) 2 fresh cells, and (c) 3 fresh cells, where the remaining cells in
the system (total of 8 cells) are initially at 85% SOH. The data shows the standard deviation across the 8 cells in the system

for energy throughput per cycle (Wh/cycle) throughout the simulations.

be quite significant, which applies well with the DR topology. In DES applications where

modules get replaced frequently, applying the DR topology can result in significant perfor-

mance improvements (shown to be around 8-15% improvement) in contrast to traditional

static topologies.

Dynamic Reconfiguration Performance Improvement - Effect of Configuration Vari-

ability

After analyzing the SOH effect on DR performance improvement, the large variation

in cell to cell aspects showed quite significant effect on system improvement when imple-

menting DR. The next parameter to investigate is the effect of the configuration. For the 8

cell system, there are two configuration options: 4S2P, and 2S4P. The important distinction

between these two configurations is the number of parallel strings in each. Referring back to

Table 4.1, the number of configurations at each value of SPC varies quite significantly. When

increasing the number of parallel strings (2S4P configuration), the DR controller has signifi-

cantly more opportunities to reconfigure and ultimately limit the performance demand from

the weaker (lower SOH/SOC) cells in the system, while the stronger (higher SOH/SOC)

cells in the system can take the bulk of the load.
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Figure 4.21: Simulation results for total energy delivered to the load in kWh across the 8 cell system under conditions: 2%
variable Capacity and SOH for initial conditions, 30mV balancing tolerance, and various DR configuration options (SPC

variation)

Analyzing the results from simulations corresponding the the practical case (2% vari-

able SOH and Capacity), Figure 4.21 shows the total energy delivered to the load across

multiple C-Rates and SPC values. Initial conclusions from this figure should note that when

increasing the number of parallel strings (difference between 4S2P and 2S4P), the percent

improvement that DR provides increases substantially. As this is a more practical case, un-

derstanding how the selected configuration plays a role in deliverable energy improvement.

Since this is a practical case, by selecting systems with 4 parallel strings, the resulting per-

formance improvement ranges around 8-10% in deliverable energy. For applications such as

automotive, a 10% increase in deliverable energy (e.g. range) is highly desirable. However,

what makes this ultimately more appealing is by applying DR topologies to existing sys-

tems, the volume needed for the battery system likely will not change, so any performance

improvement in applications with limiting volume is in high demand.

The deliverable energy showed a significant increase in percent improvement when

shifting from 2 parallel strings to 4. Further understanding of this configuration effect on

performance was performed to understand the cell energy throughput. Figure 4.22 shows

the mean value (across the 8 cell system) for cell energy throughput corresponding to each

of the specific C-Rate and SPC simulations performed. Examining the figure, an interesting

aspect shows that the performance difference relative to the configuration increases as the
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Figure 4.22: Simulation results of mean cell energy throughput in kWh across the 8 cell system under conditions: 2% variable
Capacity and SOH for initial conditions, 30mV balancing tolerance, and various DR configuration options (SPC variation)

C-Rate is lowered. Essentially, the lower the C-Rate, the better the performance improve-

ment should be expected when increasing the parallel strings in the configuration. While

this simple relationship was found for an 8 cell system, typical systems in commercial ap-

plications employ battery packs with much larger cell counts. Due to this, the relationship as

the number of parallel strings extends beyond 4 is needed. After making these conclusions

both for delivered energy, and cell energy, further examination into the configuration impact

on performance needs to be focused on the cell to cell variation in performance.

Table 4.12: Standard deviation values across multiple C-Rates and SPC for the cell energy
throughput comparison across 4S2P and 2S4P configurations in the 8 cell system.

Model SPC 5C-Rate 2C-Rate 1C-Rate
4S2P 2S4P 4S2P 2S4P 4S2P 2S4P

Static - 0.4093 0.5784 0.6283 0.8862 0.7986 1.1985

Dynamic

4 0.0393 0.2128 0.4043 0.2974 1.0318 0.4350
5 0.0583 0.1741 0.1255 0.2682 0.4107 0.4132
6 0.0601 0.1726 0.1044 0.2627 0.4088 0.4196
7 0.0604 0.1795 0.1012 0.2605 0.3893 0.4176
8 0.0604 0.1799 0.1012 0.2605 0.3893 0.4279

max 0.0604 0.1799 0.1012 0.2605 0.3893 0.4285

In order to examine the relationship for cell to cell variation with respect to the variation

in configurations, Table 4.12 is presented to deduce conclusions. Examining this table, it can

be concluded that the DR topologies result in overall lower standard deviations, or variation,
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in cell to cell performance regardless of configuration. However, it seems as though the

standard deviation increases when moving to configurations with more parallel strings. This

could be perceived as a potential drawback, but it should be noted that the standard deviation

for the DR cases is still improved in comparison with the static case. Even though the

variation in cell to cell performance increases with more parallel strings, the performance

enhancements in both cell energy throughput, as well as total energy delivered to the load

certainly supersedes any potential drawback from a slight increase in standard deviation.

Examining the performance differences during the simulations was performed in order

to better understand any performance variations between static and DR topologies solely

based on the different configurations. While it has already been shown that the increased

number of parallel strings results in more performance enhancement in terms of final val-

ues, understanding how the performance varies during the simulation for various numbers

of parallel strings was done. Figure 4.23 shows the 1C-Rate simulations for the DES case

of 1 fresh cell with the rest aged, since this condition showed significant variability in the

system to allow the full potential of DR to enhance performance. (a) in the figure repre-

sents the 4S2P configuration (2 parallel strings), and (b) represents the 2S4P configuration

(4 parallel strings). By examining the results for this DES case, we see the most perfor-

mance improvement potential through DR since there is a large variance across the cells in

the system, where the controller begins finding optimum configurations immediately when

the simulation starts, unlike the figures shown previously for the ideal and practical case

(see Figure 4.15). Since the simulation was based on an 8 cell system, there are only two

configuration options that are reconfigurable (8S1P and 1S8P would only have one potential

configuration that is unique), so examining the differences when doubling the number of

parallel strings is the only option thus far. Examining this figure, the deliverable energy per

cycle instantly shows superior performance for the DR case in comparison to the static case.

However, the effect of the number of parallel strings results in the various levels of SPC to

largely effect the performance improvement in terms of energy per cycle when comparing

against SPC ranging from 4 to maximum. Since the 4S2P (plot (a) in the figure) shows more

of a performance separation when changing the value of SPC, it is intuitive to assume that
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when increasing the number of parallel strings in the system, the resulting need for higher

values of SPC diminishes. To illustrate this, refer back to Table 4.1 where we can see the

total number of configuration options as a function of parallel strings and SPC values. As

we increase the SPC, under 4 parallel strings (2S4P in this case), the total number of config-

urations is already extremely high, that it is difficult to find a new configuration that delivers

more that a lower value of SPC might not have access to.
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Figure 4.23: Comparison of static vs dynamic models under the multiple SPC conditions (labeled in the legend) for 1C-Rate
current. The configurations are: (a) 4S2P (b) 2S4P, and both were tested under the initial condition of 1 fresh cell with the

rest aged (DES case). The data shows the total energy delivered to the load for each cycle.

In order to further understand the implication of SPC relative to the number of parallel

strings, Figure 4.24 was used to illustrate the configuration selection for the 1C-Rate test

condition across (a) the 4S2P configuration, and (b) the 2S4P configuration. Note that the

2S4P case had over 2,000 more reconfiguration events during the lifetime of the system,

which ultimately resulted in the far superior performance discussed previously in the section.

From Table 4.1, the 2S4P configuration had 105 potential configuration options, while the

4S2P configuration had only 35. This nearly 3x increase in configuration options lead to

2,000 more reconfiguration events, and ultimately a larger percent improvement for the 2S4P

configuration in contrast to the 4S2P configuration. However, an interesting observation

was that both configurations did not use every configuration option available, and seemed to

gravitate towards a few throughout the entire lifetime. In a commercial setting, the engineer
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could identify these key configurations, and solely select these for the controller to evaluate

in order to greatly reduce the computation needed to determine the optimum configuration,

especially in scenarios where the potential configurations get larger than 1,000 (e.g., battery

systems with more than 8 cells).
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Figure 4.24: Comparison of the configuration choice by the reconfiguration controller for the max SPC condition for the
1C-Rate condition where (a) corresponds to the 4S2P configuration, and (b) corresponds to the 2S4P configuration.

Further understanding of the performance difference as a function of SPC and config-

uration choice was performed by understanding how the variance in cell energy per cycle

behaves. Figure 4.24 shows the 1 fresh cell (e.g., DES condition), 1C-Rate condition with

the SPC values varying from 4 to maximum, where (a) corresponds to the 4S2P configura-

tion, and (b) corresponds to the 2S4P configuration. Note that again, the 2S4P shows little

separation in performance as a function of SPC, even though the performance far supersedes

the static condition. However, the 4S2P does show the impact of SPC selection relative to

the cell energy throughput to expect in the system, which results in the conclusion that by

increasing the parallel strings, the configuration options is increased significantly enough to

allow lower levels of SPC to achieve the same performance enhancement.

The results in this section provided a strong case to understand how the configuration

selection for an application will impact the resulting performance enhancement when inte-

grating DR topologies. As the number of parallel strings increases, the total number of con-

figuration options increases as well, which seemed to become redundant as the performance

enhancement for varying SPC values did not seem to change significantly. Application spe-

cific studies would need to be conducted in order to determine the optimized SPC value to

use in order to retain the performance enhancement of DR, while minimizing the cost to

implement the system. While an 8 cell system would not have a large quantity of switches
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Figure 4.25: Comparison of static vs dynamic models under the multiple SPC conditions (labeled in the legend) for 1C-Rate
current. The configurations are: (a) 4S2P (b) 2S4P, and both were tested under the initial condition of 1 fresh cell with the
rest aged (DES case). The data shows the average energy throughput across the 8 cell system (with error bars indicating the

standard deviation) per cycle (Wh/cycle) throughout the simulations.

to try to optimize for minimizing switches (and cost), when moving to larger sized systems

(e.g., EV’s with battery systems containing thousands of batteries), the reduction of SPC

just by one level could result in significant cost savings.

Dynamic Reconfiguration Performance Improvement - Effect of Balancing Specifica-

tion Variability

The final parameter of interest to investigate was the effect of the balancing specifica-

tion on any performance enhancements when utilizing DR. Searching through literature and

commercial products, typical balancing specifications were found to range from 30mV to

50mV. By investigating this range of balancing specifications, it is important to understand

if changing the balancing specification can result in any impact on the DR performance

enhancement.

To examine any performance impact due to the balancing specification, the practical

case was studied for the balancing specification conditions: 30mV, 40mV, and 50mV. Recall,

that the practical case consists of the initial condition for SOH and capacity being equal to

2%. Figure 4.26 shows the results for the total energy delivered to the load for the practical

case, while the data corresponds to each balancing specification simulated.
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Figure 4.26: Simulation results for total energy delivered to the load in kWh across the 8 cell system under conditions: 2%
variable Capacity and SOH for initial conditions, 2S4P Configuration, and various DR configuration options (SPC variation)

Several key conclusions can be made by studying the results shown in Figure 4.26.

First, by studying each individual case (e.g. 5C-Rate and SPC-4) the performance impact

relative to each balancing specification seems to be rather minimal. While the average value

across each case differs when comparing the deliverable energy for one C-Rate to another,

or one SPC to another, the local values for the range of balancing specifications from 30mV

to 50mV changes minimally. This is important, since this indicates that the balancing speci-

fication seems to have only a slight impact on any performance enhancements found within

DR topologies. Additionally, the balancing specification seems to have more significant of

an impact as the C-Rate through the system increases. This seems rather intuitive, since as

the C-Rate gets higher, the variance in the batteries will be separated more within each cycle.

By having more separation in the cycle, some batteries hit the voltage limits sooner, which

could result in more balancing needed for that specific C-Rate. Due to this, it is reason-

able to state that as the system’s C-Rate increases, the impact on the balancing specification

becomes more critical, at least in terms of deliverable energy to the load.

The deliverable energy to the load showed promising results relative to the impact on

balancing specifications discussed previously. Further verification of the balancing speci-

fication impact is presented in Figure 4.27 as the average value of cell energy throughput.

The profile of this figure seems similar to Figure 4.26 when comparing the performance
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Figure 4.27: Simulation results of mean cell energy throughput in kWh across the 8 cell system under conditions: 2% variable
Capacity and SOH for initial conditions, 2S4P Configuration, and various DR configuration options (SPC variation)

profile across the C-Rates and SPC values. Cell energy, similar to deliverable energy, shows

the same traits when comparing the performance impact based on balancing specifications.

Further examination into the simulation results was performed to understand the energy per

cycle metric previously used.
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Figure 4.28: Comparison of static vs dynamic models under the multiple SPC conditions (labeled in the legend) for 1C-Rate
current, and 2S4P configuration. The balancing specifications are: (a) 30mV (b) 40mV, and (c) 50mV, and all were tested
under the initial condition of 2% variable SOH and Capacity. The data shows the total energy delivered to the load for each

cycle.

Understanding the balancing specification impact on performance was shown across

all C-Rates and SPC values as a final value for deliverable and cell energy previously, but
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understanding how the DR case reacts during the simulation is needed. Figure 4.28 shows

the simulation results for deliverable energy per cycle with conditions: 2S4P configuration,

1C-Rate, initial conditions of 2% variable SOH and Capacity (e.g., practical case), and

balancing specification of (a) 30mV, (b) 40mV, and (c) 50mV. Note that in this practical

case scenario, the system achieved enough variability for the controller to reconfigure about

midway through the simulation, which can be seen in (a-c) on the figure. Comparing the

different balancing specifications for the deliverable energy per cycle across each of the

SPC values, once again it seems as though the balancing specification does not significantly

impact performance.
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Figure 4.29: Comparison of static vs dynamic models under the multiple SPC conditions (labeled in the legend) for 1C-Rate
current, and 2S4P configuration. The balancing specifications are: (a) 30mV (b) 40mV, and (c) 50mV, and all were tested
under the initial condition of 2% variable SOH and Capacity. The data shows the average cell energy for each cycle (with

error bars indicating standard deviation across the 8 cells in the system).

The deliverable energy showed little, to no effect from the balancing specification, so

further analysis was performed to understand the average cell energy per cycle as well.

Figure 4.29 shows the simulation results for average cell energy per cycle (with error bars

indicating standard deviation across the 8 cells in the system) with conditions: 2S4P config-

uration, 1C-Rate, initial conditions of 2% variable SOH and Capacity (e.g., practical case),

and balancing specification of (a) 30mV, (b) 40mV, and (c) 50mV. The cell energy through-

put seems to be virtually the same across each of the balancing specifications as observed

before. An observation here is that the variance in cell energy throughput is significantly
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lower for the DR cases than in the static case, even across each of the different balancing

specifications. Regardless, both the deliverable energy, and the cell energy throughput show

that the balancing specification does not significantly impact performance.
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Figure 4.30: Comparison of static vs dynamic models under the multiple SPC conditions (labeled in the legend) for 1C-Rate
current, and 2S4P configuration. The balancing specifications are: (a) 30mV (b) 40mV, and (c) 50mV, and all were tested
under the initial condition of 2% variable SOH and Capacity. The data shows the average cell SOH across the 8 cell system

(with error bars indicating the standard deviation).

The last aspect to study for the balancing specification effect was the average cell SOH

throughout the simulation. Figure 4.30 shows the simulation results for average cell SOH

(with error bars indicating standard deviation across the 8 cells in the system, red bars for

the static model) with conditions: 2S4P configuration, 1C-Rate, initial conditions of 2%

variable SOH and Capacity (e.g., practical case), and balancing specification of (a) 30mV,

(b) 40mV, and (c) 50mV. The variation across each of the balancing specifications certainly

was not evident when analyzing the cell SOH. Although, notice that again the DR shows

significantly lower standard deviation across the 8 cells in the system in comparison to the

static model. By having a smaller variance, this means that overall the batteries were better

utilized, by maximizing the energy available and using the cells with higher SOH to degrade

those cells faster than the cells with lower SOH. In an ideal scenario, all cells in the system

would reach the 80% failure criteria together, meaning that every bit of energy was utilized

before the pack is shut down. However, by showing SOH values in the figure greater than

80%, this means that batteries were not fully utilized. Due to this, it is clear that the DR
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cases (across all SPC’s) have better battery utilization, but examining across each of the bal-

ancing specifications, the value for the balancing specification choice seems to be negligible.

Since the balancing specification seems to have minimal impact on performance for both the

cell energy throughput, cell SOH, and deliverable energy, it is reasonable to conclude the

balancing specification can be deemed as negligible to the performance enhancements found

in DR topologies.

4.4 Chapter Summary

This chapter introduced and analyzed the potential for DR topologies performance im-

pact on pack level battery systems. Since this technology was relatively immature in litera-

ture, there were significant areas of interest that demanded answers to understand potential

application of DR topologies. Since previous studies have focused on single cycle DR ap-

plication performance enhancement, or more specific scenarios such as fault tolerance, the

focal point of this research was designed around lifetime modeling and simulation of DR.

Conducting simulations was the important decision in order to reduce experimental test-

ing time, financial resources needed, but also provide the potential to study a vast range

of DR application scenarios in a reasonable time. Further studies could be conducted in a

real-world experimental testing to validate any findings from the simulations.

The first question raised about application of DR in contrast to the static condition is

validating that the lifetime performance of the battery system will improve when applying

the DR topology to the same battery system. Throughout the simulations and data presented

in this chapter, the DR case was shown to significantly improve system performance, while

some application specific scenarios were found to have a higher performance improvement

than others. Table 4.13 shows the percent improvement for the DR case against the static

case with results for the multiple SOH initial conditions studied in this chapter. Note that in

all conditions, the DR topology showed improvement, deeming the implementation of this

technology necessary for total system performance enhancement.



Chapter 4. Dynamic Reconfiguration in Large Battery Systems 137

Table 4.13: Summary of % improvement for DR case (maximum SPC condition) in com-
parison with the static case results for total energy delivered to the load across multiple

C-Rate conditions (for the 2S4P configuration)

SOH Condition 5C-Rate 2C-Rate 1C-Rate
2% Variable 4.29% 10.02% 10.79%
1 Fresh Cell 9.43% 12.75% 11.81%
2 Fresh Cell 13.25% 11.81% 17.66%
3 Fresh Cell 13.77% 17.18% 13.43%
4 Fresh Cell 17.32% 20.05% 20.65%
5 Fresh Cell 20.13% 21.06% 20.36%

Now that understanding DR shows performance improvement, the results in this chapter

next focused on the understanding of how the SPC metric correlates to the system perfor-

mance enhancement. While these results were thoroughly discussed throughout the chapter,

a summary of the percent improvement for the DR topology is shown in Table 4.14. This

table does an excellent job to allow easy comparison of different SPC values across the four

main SOH conditions discussed. Note that with the exception of two cases, the DR out-

performs the static case in delivering energy to the load. However, understanding how the

performance increases as the variance in initial conditions alters is significant to analyzing

DR performance enhancement. The percent difference going from 1 fresh cell to 2, and

ultimately 3 fresh cells SOH conditions continuously increases to show the significance of

DR technology and improving the overall deliverable energy to the load.

The final goal of Table 4.14 is to be able to conclude that the SPC value certainly

matters both from a performance enhancement standpoint, but most importantly a cost to

consumer standpoint. As the number of switches increases, the overall cost of the system

increases as well, so in order to justify the added expense, the performance enhancement has

to increase alongside the switches. However, from examining the table, it is clear to conclude

that implementing all of the switches into the system is not necessary as the performance

enhancement saturates mainly around 5 SPC values.

This chapter also examined the specific effect of parameters on any performance en-

hancement found in DR. First, the effect of the SOH was discussed for the specific DES
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Table 4.14: Summary of % improvement for DR case in comparison with the static case
results for total energy delivered to the load across multiple C-Rate conditions, showing the

simulation results for varying the SPC value

SOH Condition Switches Per Cell 5C-Rate 2C-Rate 1C-Rate

2% Variable

4 2.97 -0.33 -3.89
5 2.98 3.77 3.39
6 2.96 3.43 1.33
7 3.07 3.39 1.23
8 3.07 3.39 1.23

max 3.07 3.39 1.23

1 Fresh Cell

4 5.10 4.65 3.28
5 7.16 7.48 3.89
6 5.48 7.52 6.31
7 5.48 7.52 6.31
8 5.48 7.52 6.31

max 5.48 7.52 6.31

2 Fresh Cell

4 4.55 8.17 5.17
5 7.13 8.03 6.09
6 6.56 8.08 7.41
7 6.14 8.10 7.14
8 6.14 8.10 7.14

max 6.14 8.10 7.14

3 Fresh Cell

4 3.99 7.55 4.63
5 8.34 7.98 8.11
6 8.60 8.86 8.05
7 8.56 9.12 8.02
8 8.56 9.12 8.02

max 8.56 9.12 8.02

application where fresh modules were placed with aged modules, as done in industry. Ad-

ditionally, the effect of the configuration was discussed and shown that as the number of

parallel strings increased in the system, the percent improvement when utilizing DR signif-

icantly increased. Finally, the balancing specification impact on performance was studied

to understand how strict, or lenient, the balancing specification will effect any performance

enhancements found within DR applications.

With all of these conclusions being made, an observation can be made at the highest

level of speculation for potential advantages of DR being implemented in industry. From

speaking to our sponsor (Johnson Controls), "bin" sorting that is done at manufacturing

plants can be very expensive, both in time, but also space needed within the manufacturing
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plant. Recall, that "bin" sorting is essentially performing capacity checks on the batteries

as they are made, and grouping them in bins to get them all within an allowable tolerance

range to put together in a pack. It is intuitive to think that this could take a lot of physical

space in a plant, but also a significant time expense. The results of the DR research shown

indicated that the DR truly thrives when finding variation in the system. While this variation

will ideally be after the system is integrated into an application, it provides the idea that

the bin sorting being performed can be overcame with DR. Although, maybe bin sorting is

still necessary, and should not be completely removed if implementing DR, but perhaps it is

reasonable to assume the bin sorting tolerance could be lightened to a wider range resulting

in less time, and space expenses to the industry.
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Chapter 5

Conclusions, Contributions, and

Recommended Future Work

5.1 Conclusions

Since the areas of this research vary significantly, the conclusions will be sorted by the

specific area, with each item in the list denoted at the beginning the area that the bullet point

covers:

• State of Energy - The first aspects of this research focused on a single discharge

event to directly compare the SOC and SOE models variation. The results showed

that these models do in fact show a difference, but most importantly, the peak value

of the difference occurs in the middle of the SOC operating range (⇡50%). Knowing

where this peak value is located is critical, since most applications narrow the SOC

operating window, and could result in a small SOC window that oscillates frequently

around this peak error range.

• State of Energy - Investigating the model differences resulted in a profile that showed

the model differences between SOC and SOE, and examining further, the peak value

of the model differences was found to be strictly dependent on the C-Rate of the

discharge. All C-Rates showed similar profile, however the model differences showed

dependent on the C-Rate.
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• State of Energy - The aging effect of the batteries were studied to understand how

the model differences between SOC and SOE are shown as the battery ages. Results

showed that the model differences do not remain constant, but do in fact change as

a function of battery SOH. This resulted in numerous paths that could be taken for

this algorithm in improving EMS performance. First, this aging effect on the model

differences needs to be understood in order to accurately make EMS decisions based

on either SOC or SOE, or some combination of both. Next, the investigation into the

slope of the model differences change was investigated and introduced as a potential

candidate to use as an aging, or lifetime prediction of the battery as a way for the EMS

to efficiently predict SOH of the individual batteries.

• Battery Dimensional Changes - The first main conclusion surrounding this research

area was determining that a strain gauge could be directly applied to a battery and be

used to show a profile correlation to a voltage profile. Ultimately, this showed that a

strain gauge adhered directly to the cell can be used to correlate to SOC the same way

voltage can be used.

• Battery Dimensional Changes - The location selected for the strain gauge was found

to be critical in terms of visibility of the batteries expansion/contraction. In this anal-

ysis, the vent location on the battery was found to have the most visibility in the strain

signal, which concludes the desire to engineer a special surface location on the cell

casing to allow optimal placement of the strain gauge for the best possible measure-

ment of the strain on the surface of the battery.

• Dynamic Reconfiguration - The initial round of simulations showed at the funda-

mental level that Dynamic Reconfiguration showed a performance enhancement in

contrast to the traditional static configuration. The scope of this work focused on

implementing the maximum number of switches per cell in order to understand any

performance enhancement in the technology. The significance of the performance
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enhancement was found to be heavily dependent on the initial conditions of the sys-

tem, which were selected in ways to target specific application areas that Dynamic

Reconfiguration could offer improvements.

• Dynamic Reconfiguration - After the scope of this research showed that Dynamic

Reconfiguration found to have a performance enhancement, the study focused on un-

derstanding the Switches Per Cell value (SPC), and the resulting performance en-

hancement associated with the SPC value. The results showed that the maximum

condition does in most cases result in the most performance enhancement, however,

the improvement was also obtained at lower values of SPC. Ultimately, this showed

that an engineering optimization could be performed when understanding the appli-

cation specific impact in order to reduce the SPC value, while maintaining the same

performance enhancement. Reducing the SPC in the system is ideal from a commer-

cial sense, because lowering the SPC directly reduces the overall cost of the battery

pack.

• Dynamic Reconfiguration - The State of Health minded reconfiguration was showed

to better reduce the variance in performance from cell to cell comparisons in the bat-

tery pack amongst the vast amount of application specific simulations performed. The

batteries showed better overall utilization, and ultimately resulted in less variance in

terms of State of Health at the end of the simulation. By reducing the variance in cell

to cell comparison, this resulted in longer overall operation, which led to increasing

the deliverable energy to the load.

• Dynamic Reconfiguration - The selected configuration was found to significantly

impact the percent improvement found with the DR topology relative to the static

model. By increasing the parallel strings in the battery system, the percent improve-

ment significantly increased. However, as the number of parallel strings increased,

the complexity of the system increased significantly due to the overall configuration

options becoming available.
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5.2 Contributions

Since the areas of this research vary significantly, the contributions will be sorted by the

specific area, with each item in the list denoted at the beginning the area that the bullet point

covers:

• State of Energy - Examining this work in literature resulted in discussions about

the advantages/disadvantages of SOE in comparison to SOC, however there were no

studies directly comparing them under various temperature, and C-Rate conditions.

This work directly compared these models to understand exactly where they differ,

resulting in an in depth understanding of how the models provide different results that

could be supplied to the EMS.

• State of Energy - Most of literature focused on a single discharge/charge event, while

not extending the model differences as the battery is aged. By running aging exper-

iments at 2 different C-Rates, further understanding of how these models compared

against each other as the batteries age was previously undefined. Understanding how

the model differences between SOC and SOE results could be used as a lifetime model

indication, while not resulting in an extensive SOH model to be run separately can be

used as a way to reduce the computational needs of the EMS system.

• Battery Dimensional Changes - This work, for the first time, showed that strain

gauges could be directly applied to a battery as a way of monitoring the battery di-

mensional changes to correlate to the voltage, and furthermore to the SOC of the

individual battery.

• Battery Dimensional Changes - This work also found that redesigning the battery

case could result in an optimized surface for increased resolution of the strain mea-

surement, which would allow for less signal noise, and better EMS decisions for the

strain signal being utilized.
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• Dynamic Reconfiguration - Within the Dynamic Reconfiguration research, this work

introduced the first aging study on the Dynamic Reconfiguration technology perfor-

mance improvement as the batteries are aged. Previous work studied the effect solely

for a discharge or charge event. This work extended the research to understand the

lifetime performance enhancements available when utilizing the Dynamic Reconfigu-

ration concept.

• Dynamic Reconfiguration - Previous work on State of Health minded reconfigura-

tion focused on the deliverable energy to the load in a single discharge event. With

this research extending to lifetime modeling, the understanding of performance en-

hancement when reconfiguring the battery pack with State of Health minded control

was evaluated and well understood.

• Dynamic Reconfiguration - Previous work focused on implementing switches into

the system in a maximum Switches Per Cell (SPC) standpoint. This research studied

the effect on the SPC value correlation to the resulting performance enhancement for

the energy system.

5.3 Recommended Future Work

Since the areas of this research vary significantly, the recommended future work will be

sorted by the specific area, with each item in the list denoted at the beginning the area that

the bullet point covers:

• State of Energy - The next logical step in this research area would be to perform

the lifetime experiments at both high and low temperature environments. The aging

effect on SOC and SOE model differences was found for room temperature, but under-

standing the temperature effect on this relationship is critical for accurate commercial

products.
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• State of Energy - Since this study performed an aging experiment solely at 5, and 2

C-Rates, further exploration at lower C-Rates is needed. Ideally, 1 C-Rate, and 0.5 C-

Rate would be recommended to evaluate if time and resources permit. Understanding

a wider range of C-Rates and the effect on the SOC-SOE correlation is needed to

move closer to a commercial application.

• Battery Dimensional Changes - This research showed the validation that a strain

gauge could be directly placed onto a battery for correlation to SOC, further experi-

ments would be needed to extend the scope of this research to optimizing the strain

gauge sensor. The current strain measurement could be significantly improved by

investing in better strain measurement systems, which are commercially available to

help reduce signal noise apparent in the research. Additionally, adding temperature

compensation strain gauges at the same location would significantly help reduce sig-

nal noise, especially in events of higher C-Rates where the surface temperature of

the battery could change significantly, which would result in polarization of the strain

signal.

• Battery Dimensional Changes - Further experimentation to understand the polariza-

tion effect of the strain gauge under current events is needed to validate the concept

improvement in contrast with OCV measuring. Performing tests such as Hybrid Pulse

Power Characterization (HPPC), or other discharge events (not full DOD) and setting

the system to rest to understand how the voltage, and strain measurements polarize.

However, this work is dependent on the optimization of the strain measuring equip-

ment, in order to accurately make conclusions of the polarization effect in the strain

measurement.

• Dynamic Reconfiguration - Studying the effect of performance on the total cell count

in the pack, in order to understand if performance benefit remains the same while

reconfiguring with State of Health minded control. Additionally, understanding the

Switches Per Cell performance correlation as the total battery count in the system

increases is essential to progressing towards a commercially viable product.
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• Dynamic Reconfiguration - Since all of this research in this area focused on simula-

tion level experiments to evaluate a wide range of application parameters, performing

experimental round trials in a lab environment is essential to validating the results

found in simulation. Selecting the right conditions to study would depend on the tar-

get application to pursue, and based on this work produced, exploring the conditions

when placing fresh modules amongst aged would be one of the most significant sim-

ulations to validate in the laboratory.
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